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a b s t r a c t 

Recent emergencies, such as the COVID-19 pandemic have shown how timely information sharing is es- 

sential to promptly and effectively react to emergencies. Internet of Things has magnified the possibility 

of acquiring information from different sensors and using it for emergency management and response. 

However, it has also amplified the potential of information misuse and unauthorized access to informa- 

tion by untrusted users. Therefore, this paper proposes an access control framework tailored to MQTT- 

based IoT ecosystems. By leveraging Complex Event Processing, we can enforce controlled and timely data 

sharing in emergency and ordinary situations. The system has been tested with a case study that targets 

patient monitoring during the COVID-19 pandemic, showing promising results. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Recent emergencies, such as the COVID-19 pandemic, have 

hown that, due to scarcely information sharing, emergency pro- 

ocols often fail in fully achieving their goals. For instance COVID- 

9 contact tracing has been pointed out by the World Health Or- 

anization as a strategic tool for contrasting SARS-CoV-2 diffu- 

ion and reducing COVID-19 mortality. 1 However, manual contact 

racing methods proved scarcely applicable, highly demanding in 

erms of time and human resources, and overall impractical with 

 high number of new daily cases. Moreover, people’s ability and 

illingness to derive and disclose sensitive information, as vis- 

ted places and persons met, have further hindered their applica- 

ion and efficacy. Contact tracing apps have addressed the scalabil- 

ty and performance issues of manual methods. However, due to 

 scarce perception of enforced data protection, in several west- 

rn countries, citizens proved unavailable to install and use these 

pps ( Akinbi et al., 2021 ). As a consequence, the efficacy of con-

act tracing has been undermined by limited population coverage. 

hese facts suggest that efficient data sharing is a key requirement 

or emergency management, and should be complemented with 

roper data protection tools. 
∗ Corresponding author. 

E-mail addresses: pietro.colombo@uninsubria.it (P. Colombo), 

lena.ferrari@uninsubria.it (E. Ferrari), edtumer@uninsubria.it (E.D. Tümer) . 
1 https://www.who.int/publications/i/item/contact- tracing- in- the- context- of- 
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Efficient emergency management starts with timely identifica- 

ion of an emergency through the analysis of what has occurred in 

 target scenario and requires that all resources needed to properly 

andle the identified emergency are timely accessed by authorized 

ubjects. Internet of Things (IoT) technologies provide valid support 

o the development of efficient data sharing and analysis services 

nd thus appear well suited for building emergency management 

pplications. Data can be gathered by manifold types of smart de- 

ices which are nowadays available for different domains. For in- 

tance, for what healthcare is concerned, medical wearables and 

oT technologies are enabling new forms of diagnosing and care 

nd allow the detection of emergency situations. As an example, 

uring the COVID-19 pandemic, the OLVG Hospital in the Nether- 

ands started to experiment with wearable biosensors able to de- 

ect possible deterioration of suspected or confirmed COVID-19 pa- 

ients. 2 The proposed monitoring framework aimed at limiting the 

nteraction of patients with the medical personnel, favoring at the 

ame time a prompt intervention, when required. 

The management of an emergency typically also requires grant- 

ng exceptional privileges to subjects, which in an ordinary situa- 

ion would not be permitted. For instance, in an ordinary situation, 

 physician responsible to provide treatment has to ensure that 

alid consent has been obtained from the patient or a delegated 

erson before the treatment can begin. However, if an emergency 
2 https://www.bioworld.com/articles/435384- philips- debuts- wearable- vitals- 

ign- patch- to- monitor- covid- 19- patients- for- early- intervention . 
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ccurs and the treatment is finalized to save the patient life, it can 

e provided without consent. Nonetheless, all granted exceptional 

rivileges have to be immediately revoked as soon as the emer- 

ency is over. 

The enforcement of similar controls within IoT applications re- 

uires mechanisms able to regulate the access to data gathered by 

oT devices. Although a variety of access control models for IoT ap- 

lications have been proposed in the literature (e.g., see Qiu et al., 

020 for a compendium), just a few of them allow regulating data 

haring in emergency situations (see Section 9 ). All these propos- 

ls rely on a permission management approach known as break 

he glass (BtG), according to which, during an emergency, a user 

equests and then gains access to resources that would not be per- 

itted to him/her in normal conditions. Although extremely flexi- 

le, BtG approaches have drawbacks. For instance, the accesses ex- 

cuted after breaking the glass are normally traced for later re- 

iews ( Schefer-Wenzl et al., 2014 ), opening the way to possible 

nformation leakage. In addition, the abuse of BtG policies can 

ead the system to an unsafe state ( Carminati et al., 2013 ), thus

ufficient ordinary access control policies should always be speci- 

ed to minimize the necessity of breaking the glass. Although not 

argeting the IoT domain, complementary approaches to regulate 

nformation sharing in emergency situations have been proposed 

 Carminati et al., 2013; Kabbani et al., 2014 ), where emergency 

olicies were introduced to grant subjects all privileges needed for 

he management of specific emergencies, as soon as they occur. 

ince emergency management plans are expected to be a priori 

efined, emergency policies could be specified in such a way to 

ulfill information-sharing requirements elicited from the associ- 

ted plan. As an example, an a priori defined protocol is expected 

or the above-mentioned patient monitoring scenario, which, un- 

er specific emergencies, allows medical personnel with certain 

unctions to access patients’ physiological data (e.g., in case of a 

evere cardiovascular issue, the privileges should be granted to car- 

iologists). Permission management based on emergency policies 

llows shorting data access time, as no request to override permis- 

ion has to be issued, and data can thus be received by authorized 

ubjects as soon as the emergency begins. However, to the best 

f our knowledge, none of the previous approaches targets the IoT 

omain. 

In this paper, we do a step to fill this void, by proposing an

ttribute-based Access Control (ABAC) framework to regulate data 

haring within MQTT-based IoT applications in ordinary and emer- 

ency situations. The choice of targeting MQTT is motivated by the 

ide adoption of this protocol within IoT applications for inter- 

evice communication, whereas ABAC has been selected as it has 

lready been profitably used to regulate data sharing on the basis 

f context properties (e.g., see Colombo and Ferrari, 2018; Colombo 

t al., 2021 ), which makes it a good fit for emergency policy sup- 

ort. As a matter of fact, policy selection requires evaluating ac- 

ess request contexts, checking whether the subject that aims at 

ending and receiving an MQTT message is involved in emergency 

ituations. 

The proposed system is an extension of the framework we pro- 

osed in Colombo and Ferrari (2018) that supports ordinary fine- 

rained access control policy enforcement in MQTT environments. 

ey novel features introduced by this paper include: 

• modeling support required to: i) define the events that trigger 

an emergency, ii) bind events to MQTT messages, iii) specify 

emergency situations along with their possible evolution, and 

iv) specify emergency policies; 

• emergency management functionalities, that is, the ability to: i) 

detect occurrences of modeled events starting from the analysis 

of MQTT control packets exchanged in a monitored application, 

and ii) identify the possible evolution of emergency situations. 
2 
For event detection, we leverage on a complex event processing 

engine; 

• access control capabilities, that is, the ability to enforce both 

regular and emergency access control policies which apply to 

an access request issued in a specific context. 

To show the feasibility of the proposed approach we apply our 

ramework to a case study of pseudo-realistic complexity related to 

n MQTT-based health monitoring application employed in a nurs- 

ng home during the COVID-19 pandemic. Our framework is here 

mployed to regulate information sharing within the considered 

pplication, with the aim to ensure that in ordinary and emer- 

ency situations data can only be accessed by authorized subjects. 

he proposed case study allows us to exemplify the definition of 

ll modeling artifacts required to configure the framework for the 

onsidered application. The case study has also been employed for 

n early performance evaluation of the proposed approach, overall 

howing a reasonably low enforcement overhead. 

The remainder of the paper is organized as follows. 

ection 2 introduces a running scenario that will be used 

hroughout the paper to exemplify basic framework concepts, 

nd which will be also developed into a case study. In Section 3 ,

e introduce background technologies instrumental for the frame- 

ork definition. Section 4 presents key concepts related to the 

roposed event modeling approach, whereas Section 5 introduces 

he foundations of our access control model. Section 6 provides 

n overview of the framework architecture and shortly presents 

he rationale of the enforcement mechanism, which is then more 

horoughly analyzed in Section 7 . In Section 8 we present a case 

tudy, an early experimental evaluation of the framework per- 

ormance, discussing possible addressing strategies for identified 

ramework limitations. Section 9 presents a short survey of related 

ork, whereas Section 10 concludes the paper. 

. Running example 

Let us consider an IoT application that aims at monitoring the 

ealth conditions and behaviors of patients hosted in a nursing 

ome during the COVID-19 pandemic. IoT devices worn by pa- 

ients and sensors deployed in the rooms where patients live al- 

ow the real-time monitoring of patients’ conditions. For instance, 

ody temperature and respiratory rate are vital signs of patients 

hat can be acquired by wearable biosensors, whereas the location 

f patients can be collected by indoor tracking bracelets. The ac- 

uired data are stored, and can therefore be visualized and ana- 

yzed by dedicated monitoring apps used by medical personnel of 

he nursing home, by selected relatives of the patients who can 

heck the conditions of their kin, and even by self-sufficient pa- 

ients who wish to check their own conditions. Medical personnel 

as access to physiological and environmental data, whereas pa- 

ients and relatives have limited authorizations. 

Patients can occasionally face emergency conditions, which re- 

uire a prompt reaction from the medical personnel. To effec- 

ively manage some emergencies, it is required to share patients 

ata in critical conditions with external physicians with the aim 

o promptly identify proper treatment. The monitored data is 

lso used to contrast COVID-19 diffusion. Temperature and oxy- 

en saturation levels reveal potential COVID-19 symptoms and 

ould be used to notify physicians to make a test. The access to 

roximity data of infected patients, and the immediate isolation 

f potentially infected guests, allow contrasting COVID-19 diffu- 

ion ( Ouslander and Grabowski, 2020 ). 

Patients data has to be accessed by authorized users in any pos- 

ible situation. The considered scenario emphasizes the need for 

pecial policies to enforce access control during emergencies that 

e will illustrate in the following sections. 
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Table 1 

MQTT control packets. 

Control packet Acronym Description 

CONNECT cp CN Connection request 

CONNACK cp CA Connect acknowledgment 

PUBLISH cp PB Publish message 

PUBACK cp PA Publish acknowledgement 

PUBREC cp PRC Publish received 

PUBREL cp PRL Publish release 

PUBCOMP cp PC Publish complete 

SUBSCRIBE cp SB Subscribe to topics 

SUBACK cp SA Subscribe acknowledgement 

UNSUBSCRIBE cp US Unsubscribe from topics 

UNSUBACK cp UA Unsubscribe acknowledgement 

PINGREQ cp PRQ PING request 

PINGRESP cp PRS PING response 

DISCONNECT cp DS Disconnect notification 
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Table 2 

An abstract event algebra for complex event speci- 

fication ( Giatrakos et al., 2020 ). 

ce:: = pe Primitive Event 

ce 1 ; ce 2 Sequence 

ce 1 ∨ ce 2 Disjunction 

ce 1 ∧ ce 2 Conjunction 

ce ∗ Iteration 

¬ ce Negation 

σθ ( ce ) Selection 

πm ( ce ) Projection 

[ ce ] 
T 2 
T 1 

Windowing from T 1 to T 2 
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. Background 

In this section, we shortly present key aspects of MQTT, Com- 

lex Event Processing, and the access control model for MQTT 

nvironments we proposed in Colombo and Ferrari (2018) , since 

hey are instrumental for the definition of the proposed emergency 

anagement framework. 

.1. MQTT 

MQTT is a popular protocol for IoT applications and can be used 

n a variety of IoT scenarios ( Mishra and Kertesz, 2020 ). It allows

eers of an IoT ecosystem to communicate by means of the pub- 

ish/subscribe paradigm. In an MQTT environment, multiple clients 

xchange messages by means of a message broker. MQTT clients 

onnect to an MQTT broker to send or receive application mes- 

ages. Clients can subscribe to the reception of messages on the 

opics caught by a topic filter specification tf , or can request the 

QTT broker to publish messages on given topics. MQTT brokers 

oute messages on the basis of the associated topic. A topic fil- 

er, in turn, is a textual expression, which, by employing special 

haracters, denoted as wildcards, allows referring to multiple top- 

cs. Whenever a broker receives a publishing request on a topic t , 

t forwards the message to any client that subscribed to the recep- 

ion of messages on topics that include t . 

Broker and clients interact by exchanging control pack- 

ts ( Banks et al., 2019 ). The list of MQTT control packets is reported

n Table 1 . 

Let us refer to the broker of an MQTT environment as b . In or-

er to connect with b , for sending or receiving messages, an MQTT 

lient c sends a connection request cp CN to b. On receipt of this 

acket, b evaluates the request and sends back an acknowledg- 

ent cp CA to c which specifies whether the request has been ac- 

epted and thus a connection has been opened. Once a connection 

s established, c can request to publish an application message on 

 topic t with a payload p , by issuing a publishing request packet 

p PB . In addition, c can also request the reception of messages on 

opics that match a topic filter tf , by sending a subscription request 

acket cp SB to the broker. 

The topic t referred to in a packet cp PB is a string composed of 

 sequence of / separated tokens, referred to as topic levels. The 

rotocol does not constrain the format of a message payload p. 

owever, a predominant data-interchange format adopted in nu- 

erous MQTT-based applications is JSON ( Bray, 2017 ). Therefore, in 

his paper, we assume the payload is formatted as a JSON object 3 

nd thus represented as a set of hierarchically organized key-value 
3 https://www.json.org/ . 

d

j

w

3 
airs. An interested reader can refer to Banks et al. (2019) for fur- 

her details on the MQTT protocol. 

.2. Complex event processing 

A complex event processing (CEP) system is a framework whose 

rimary aim is to understand what is happening in a system un- 

er analysis ( Giatrakos et al., 2020 ). A CEP system is composed 

f a set of event sources , a CEP engine , and a group of event

inks ( Cugola and Margara, 2012 ). Event sources are components 

evoted to: 1) identify changes of monitored system properties, 

nd 2) notify to the CEP engine of a primitive event that denotes 

he change. A CEP engine is a tool that identifies the occurrence of 

pecific situations in the monitored system. Situations are modeled 

s patterns of events, referred to as complex events , which occur in 

 time interval in the monitored system. Event sinks are notified 

f the occurrence of complex events by the CEP engine and are 

onfigured to promptly react to the identified conditions. A notifi- 

ation is an object with fields specifying a time annotation , which 

efers to the event generation time, a payload , which specifies the 

vent content and is structured as a data record, and a type , which 

onstrains the structure of the payload ( Cugola and Margara, 2015 ). 

xample 1. Let us consider a thermometer th which is used to 

onitor a patient’s body temperature. The events generated by this 

vent source may have payloads composed of attributes tempera- 

ure and deviceId , which respectively denote the measured temper- 

ture and the device identifier. A measured temperature of 37 ◦C at 

ime ts can thus be represented as a JSON object: Temperature@ts: 

“temperature”:37, “deviceId”:th } , where @ts denotes the time an- 

otation, and {“temperature”: float, “deviceId”: string} the associated 

ype. 

Complex events are usually specified using platform-specific 

anguages. Although no universally recognized standard mod- 

ling language exists for specifying complex events, the ma- 

ority of CEP engines allow specifying them within SQL-like 

ueries ( Giatrakos et al., 2020 ). 

In order to specify complex events abstracting from platform- 

pecific details, in this paper, we use the abstract event algebra 

resented in Giatrakos et al. (2020) , whose operators are listed 

n Table 2 . 

A complex event ce is therefore defined by the composition of 

rimitive and complex events, using a variety of operators (e.g, se- 

uence (;), disjunction ( ∨ ), conjunction ( ∧ )). 

Additionally, the iteration operator ( ∗) allows the specification 

f a complex event as a set of events of the same type that occur

epeatedly. In this case, ce occurs when the number of referred oc- 

urrences is reached. A complex event ce can also be defined by 

egation ( ¬ ) of another event ce’ , meaning that ce only occurs if ce’

oes not occur. Finally, ce can be modeled as a selection or pro- 

ection of other events. The selection operator ( σθ ) filters events 

hose attribute values satisfy a condition θ , whereas the projec- 

https://www.json.org/
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ion operator ( πm 

) extracts only part of the attributes, according to 

 set of mapping expressions m . 

Any specification of a complex event ce can refer to events that 

ccur in a specific time interval, specified through the window op- 

rator [ . . . ] 
T 2 
T 1 

. 

xample 2. Let us assume that sensors worn by patients periodi- 

ally issue a primitive event RespiratoryRate pe , which simply noti- 

es the observed number of breaths per minute (bpm). A complex 

vent Breathlessness ce which shows shortness of breath episode ob- 

erved in the last 2 days, can thus be defined as: 

( σ bpm 

> 25 (RespiratoryRate pe )) now 

now - 2 days 

.3. Access control in MQTT environments 

In this section, we shortly present the ABAC model for MQTT 

nvironments we proposed in Colombo and Ferrari (2018) . 

Subjects, objects, and environments are the basic building 

locks of the proposed model. A subject s represents a client 

hich, possibly on behalf of a user, connects to an MQTT broker 

ith the aim of sending or receiving messages. s is characterized 

y attributes, such as the client identifier ( cID ) and, optionally, by 

 user identifier ( uID ), which denotes the user on behalf of whom

lient cID operates. Subjects who have similar access patterns can 

e classified into subject groups. 

Application messages are the protection objects of the consid- 

red model. Therefore, control packet fields, such as the message 

opic t and payload p are object attributes. Lastly, an environment 

 represents the context within which an access request is issued, 

nd could be characterized by attributes such as location, time, and 

ccess purpose. For the sake of simplicity, in this paper, we only 

onsider time as environment attribute. 

Data sharing is regulated on the basis of access control poli- 

ies, specified by security administrators, which grant subjects the 

ead/write access to messages on specific topic(s). 4 

Access control policies grant privileges under satisfaction of 

oolean expressions, denoted as parametric predicates, built by 

omposition of subject, object and environment attributes, and sets 

f predefined operators and functions. 5 

efinition 1 (Access control policy ( Colombo and Fer- 

ari, 2018 )) . An access control policy p is a tuple 〈 s, tf, exp,

r 〉 , where s refers to the subject(s) to whom p assigns privileges,

enoting the identifier of a client, user, or user group, tf specifies 

 topic filter expression, which allows selecting by topic the 

rotected messages, whereas pr specifies the read / write privilege 

ranted by p , if the parametric predicate exp is satisfied. 

xample 3. Let us consider an access control policy acp 1 , which 

uthorizes close relatives of patient p 1 to access his/her physiolog- 

cal data, and a second policy acp 2 , which grants medical personnel 

ccess to every monitored data of any nursing home patient. Policy 

cp 1 can be specified as 〈 relatives::p 1 , p1/physiological/#, true, read 〉 , 
here relatives::p 1 denotes the group of users authorized by acp 1 

o read messages that specify physiological data of p1 . Similarly, 

cp 2 can be specified as: 〈 medical_personnel, #, true, read 〉 . 
To empower users with a finer-grained control on their data, 

he model in Colombo and Ferrari (2018) allows the specification of 

ser preferences , namely user-defined policies that allow a user to 

urther constrain the read privileges granted by the access control 

olicies specified by security administrators. 
4 Read and write accesses respectively denote the privileges to send / receive 

essages on given topics. 
5 In Colombo and Ferrari (2018) , we consider mathematical operators ( > , < , = , +, 

, ∗ , /,%), logical operators ( ∧ , ∨ , ¬ ), set operators ( ∈ , ⊂, ⊆, ∩ , ∪ , \ ), logical quanti- 

ers ( ∀ , ∃ ), and predefined functions that allow the processing of attributes values. 

b  

s

e

d

o  

4 
efinition 2 (User preference ( Colombo and Ferrari, 2018 )) . A user 

reference up is a tuple 〈 uid, tf, sub_exp 〉 , where uid specifies the

dentifier of a user who wishes to protect the access to messages 

ublished by any of the clients he/she handles, tf specifies a topic 

lter expression which refers to the topics of the messages pub- 

ished on behalf of uid to which up applies, whereas sub_exp is a 

arametric predicate specifying a precondition to the receiving of 

hese messages. 

xample 4. Let us now consider a user preference up specified by 

atient p 1 who wishes to limit the read access to his/her respira- 

ory rate to medical personnel. up restricts the privileges granted 

y acp 1 , and can be specified as: 〈 p 1 , p1/physiological/respiratory, 

.gid == medical_personnel 〉 . 
The ABAC framework proposed in Colombo and Fer- 

ari (2018) provides an enforcement monitor which can be 

asily integrated into existing MQTT environments and which can 

perate with any MQTT client and broker. 

A high-level view of the framework architecture ( Colombo and 

errari, 2018 ) is shown in Fig. 1 . The monitor operates at the 

xternal interface of a trusted network where the broker and a 

oSQL datastore, that keeps track of access control metadata, are 

eployed, whereas clients operate within untrusted external net- 

orks. 

A client publishing request is intercepted by the monitor and, 

f at least one applicable policy is satisfied, the monitor authorizes 

he request. Otherwise, the publishing request is denied and the 

pplication message is blocked. If the publishing request is autho- 

ized by the specified access control policies, the monitor checks 

he existence of preferences specified by the user on behalf of 

hom the publishing request has been issued. The monitor em- 

eds all applicable preferences into the payload of the message and 

ends it to the broker. The broker, on the basis of the referred top- 

cs, routes the received packets to the rightful subscriber clients. 

ny forwarded packet is again intercepted by the monitor, which 

hecks whether the candidate’s receiver client can actually receive 

he message. The monitor evaluates the user preferences embed- 

ed in the message payload. If no preference is satisfied, the packet 

s immediately blocked. In contrast, if at least one preference is 

atisfied, the monitor checks the access control policies that regu- 

ate the reception of messages by the client. If at least one access 

ontrol policy authorizes the reception, the monitor removes the 

mbedded user preferences from the message payload and sends 

t to the client. We refer the interested reader to Colombo and Fer- 

ari (2018) for more details. 

. Event modeling 

The proper management of an emergency requires identifying 

nd modeling the events that cause the emergency. Therefore, in 

his section, we propose an approach to model events related to 

essages exchanged in a monitored MQTT environment. 

Let us start to focus on the modeling of primitive events, which 

s achieved through the specification of primitive event types. A 

rimitive event type specifies: 1) the structure of a class of primi- 

ive events, 2) the binding criteria of the considered events to the 

ontrol packets exchanged in the ecosystem, and 3) the criteria to 

erive the event starting from the structural characteristics of the 

ound control packets. 

A primitive event type is therefore modeled as a tuple 〈 pet, adc, 

cr, adf 〉 , where pet refers to the name of the event type, adc is a

et of pairs 〈 id, type 〉 that specify the attributes that compose any 

vent of type pet, bcr specifies the binding criteria, namely the con- 

itions for a cp PB control packet to trigger the generation of events 

f type pet , whereas adf is a set of pairs 〈 id, exp 〉 , where the iden-
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Fig. 1. An high-level view of the architecture in Colombo and Ferrari (2018) . 
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ifier id refers to an attribute declared within adc , whereas exp is 

n initialization expression. 

Boolean expressions that specify binding criteria are defined by 

eferring to any structural property of a candidate control packet 

p PB , such as, for instance, the topic, the whole payload, or a pay-

oad attribute, and employing arithmetical, set and logical opera- 

ors and quantifiers, as well as predefined functions. Binding cri- 

eria specify the required characteristics of a bound control packet 

 , referring to t like it was a JSON object (e.g., t.payload refers to

he payload of the control packet). The same specification criteria 

re also employed for the initialization expressions within compo- 

ent adf , allowing one to refer to t ’s properties, as well as to the

ubject, object and environment attributes related to the publish- 

ng request context of t . These attributes are referred to as fields 

f the objects s, o , and e , which represent the subject, object and

nvironment associated with the publishing request t , respectively. 

xample 5. Let us now consider the specification of a prim- 

tive event type Temp for messages published by MQTT ther- 

ometers. Let us assume that any publishing request that in- 

ludes “temperature” in the topic name is bound to a primitive 

vent of type Temp , in turn defined as a tuple 〈 Temp, {“temp”: 

oat, “time”: long, “pID”: string}, t.TopicName.includes(“temperature”), 

 “temp”:t.Payload.temperature, “pID”: o.patientID, “time”: e.time } 〉 . It 

s worth noting that the initialization of the attributes is achieved 

eferring to internal properties of the message payload, 6 and to ob- 

ect and environment attributes. 

Let us now consider the modeling of complex events. Similar to 

rimitive events, their modeling is achieved through the specifica- 

ion of an event type. 

A complex event type is a tuple 〈 cet, adc, ets, exp 〉 , where cet

pecifies the name of the event type, adc is a set of pairs 〈 id, type 〉
hich specifies the attributes composing the payload of any event 

f type pet, ets is a set that includes the list of identifiers of primi-

ive and complex event types referred to in the specification of cet , 

hereas exp is an expression defined with the abstract event alge- 

ra introduced in Section 3.2 , which allows initializing the value of 

ttributes declared within adc. exp is specified by referring to the 
6 As already mentioned in Section 3.1 , we assume that message payloads are 

tructured as JSON objects. 

s

i

a

s

5 
vent types in ets , and employing the event algebra operators (i.e., 

, ∨ , ∧ , ∗ ,¬ , σθ , πm 

[] T 2 
T 1 

, see Section 3.2 ). 

xample 6. Let us now consider the specification of complex event 

ype Fever , used to characterize events denoting that a specified 

atient has had a fever in the last 2 days. Fever can be de- 

ned as: 〈 Fever, {“pID”: string, “temp”: float}, {Temp}, ( σ temp > 

8 (Temp pe )) now 

now - 2 days 
〉 , where T emp is the primitive event type in- 

roduced in Example 5 , and Temp pe is a primitive event of type 

emp . 

Similarly, let us assume that the primitive event type 

espiratoryRate is defined as: 〈 RespiratoryRate, {“bpm”: float, 

time”:long, “pID”: string}, t.TopicName.includes(“respiratoryrate”), 

“bpm”: t.Payload.bpm, “pID”: o.patientID, “time”: e.time} 〉 . Referring 

o Example 2 , the complex event type Breathlessness used to rep- 

esent events notifying that a patient has had shortness of breath 

pisodes in the last 2 days can be specified as: 

〈 Breathlessness, {“pID”: string, “bpm”: float}, {RespiratoryRate}, 

 σ bpm 

> 25 (RespiratoryRate pe )) now 

now - 2 days 
〉 . 

The sets of primitive and complex event types specified for an 

pplication scenario are hereafter referred to as PET and CET, re- 

pectively. 

. Access control model 

In this section, we present an extension of the ABAC model 

ntroduced in Section 3.3 , which allows regulating data sharing 

ithin MQTT-based IoT environments in ordinary and emergency 

ituations. 

The proposed model is built on top of some key conceptual 

lements, respectively denoted as emergency situation, emergency 

volution , and action , which are then used to define emergency de- 

elopment plans, emergency scenarios , and corresponding emergency 

olicies . 

An emergency situation is a critical situation that happens sud- 

enly and requires prompt management to avoid harmful results. 

n emergency can evolve into another emergency, possibly more 

erious or mild, or it can be solved. Any emergency is character- 

zed by a severity level that specifies its severity. In our model, 

n emergency situation is a single stage of an emergency scenario 

ubject to possible evolution. Therefore, we model an emergency 
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ituation ems as a pair 〈 sid, lev 〉 , where sid specifies the emergency

dentifier, whereas lev denotes the related severity level. A severity 

evel is an integer value in the range [L min . L max ], configurable by

he system administrator at specification time (where L min ,L max ∈ N , 

nd 1 ≤L min ≤L max ). 

In contrast, an action is a task that converts an event of com- 

lex type into an MQTT publish request packet cp PB 
CEP , and for- 

ards it to the MQTT environment. 7 An action is modeled as a 

uple 〈 aid, cet, tp, pl 〉 , where aid and cet respectively specify the

dentifier of the modeled action and of the referred complex event 

ype, whereas tp and pl are expressions that allow the specification 

f the topic and payload of cp PB 
CEP , respectively. More precisely, tp 

s an initialization expression built referring to any attribute in the 

ayload of events of type cet (see Section 4 ), whereas pl is a set

f pairs 〈 id, exp 〉 , each specifying an attribute of the payload of

p PB 
CEP . Component id specifies the name of an attribute, whereas 

xp is the related attribute initialization expression. 

xample 7. Let us now consider the specification of action Severe- 

reathlessnessNotifier , which, upon detecting an event of type Sev- 

reBreathlessness denoting a serious form of shortness of breath, 

ublishes an MQTT message which notifies the detected criti- 

ality. SevereBreathlessness can be straightforwardly specified by 

estricting the definition of Breathlessness in Example 6 . Sev- 

reBreathlessnessNotifier is specified as 〈 SevereBreathlessnessNotifier, 

evereBreathlessness, “criticality/severebreathlessness”, {“patientId”: 

evereBreathlessness ce .pID, “time”: SevereBreathlessness ce .time, “bpm”: 

evereBreathlessness ce .bpm} 〉 . The execution of this action causes 

he publishing of a message on topic criticality/severebreathlessness , 

ith a payload characterized by fields that map those of the de- 

ected event. 

An emergency evolution is a transition between a pair of emer- 

ency situations, which occurs when, due to the continuous analy- 

is of the messages exchanged in the MQTT environment operated 

y the CEP system, an event of complex type is detected. More for- 

ally: 

efinition 3 (Emergency evolution) . An emergency evolution ev is 

 tuple 〈 cet, src, trg, act 〉 , where cet specifies the identifier of a

omplex event type in CET (see Section 4 ), src and trg respectively 

efer to the identifiers of the emergency situations that are left and 

ntered when an event of type cet is detected, 8 whereas act refers 

o the identifier of an action executed when pr occurs (or ⊥ if no

ction has to be executed). 

The occurrence of events in the monitored MQTT environment 

an cause: i) the starting of an emergency situation, ii) the evo- 

ution of an emergency situation into a more severe or mild one, 

r even iii) the resolution of an emergency situation. In order to 

odel the possible evolution of an emergency case we hereby in- 

roduce the concept of emergency development plan . 

efinition 4 (Emergency development plan) . An emergency devel- 

pment plan edp is a tuple 〈 edpi, Ev 〉 where edpi is the identifier

f the emergency development plan, whereas Ev is a set of emer- 

ency evolutions depicting the possible developments of an emer- 

ency case. 

The definition of an emergency development plan edp has to 

atisfy some well-formedness rules. An evolution ev in the set Ev 

f edp , referred to as edp.Ev , can only refer as end points ⊥ or an
7 Actions turn MQTT clients into event sinks (see Section 3.2 ), which possibly 

ould be programmed to react to the detected events. 
8 src / trg could also refer to value ⊥ to denote that the occurrence of an event 

f type cet activates / terminates an emergency scenario. Further details are pro- 

ided in the remainder of this section, where we present the concept of emergency 

cenario. 

e

m

s

w

i

p

6 
mergency situation. Moreover, any pair of evolutions that refer to 

he same emergency situation within component src , have to spec- 

fy events of different type within component cet . The same con- 

traint applies to a pair of evolutions which refer to ⊥ as source. 

In order to intuitively represent any possible evolution of the 

mergency situations referred to by an emergency development 

lan, we represent them as state machine (stm) diagrams, where 

he emergency situations are depicted as states and the evolutions 

s transitions . Each state is labeled with the identifier of the mod- 

led emergency situation, whereas each transition is labeled with 

 complex event of a type referred to by the related evolution. 

xample 8. Let us consider the emergency development plan Pul- 

onaryIssues , which is characterized by the emergency situations 

yspnea, LowOxygenSaturation , and DyspneaOxygen , where Dysp- 

ea denotes a breathing discomfort, LowOxygenSaturation a low 

evel of oxygen-saturated hemoglobin in the blood, whereas Dys- 

neaOxygen a combination of the previous cases. Two evolutions 

ap the activation of the modeled emergency case, respectively 

ntering the emergency situations Dyspnea and LowOxygenSatura- 

ion , and other two its deactivation, which exits the same emer- 

ency situations. Additional evolutions allow the transition from 

he emergency situation Dyspnea to DyspneaOxygen , and back, as 

ell as from LowOxygenSaturation to DyspneaOxygen , and back. Let 

s assume that the above-mentioned evolutions refer to events of 

ype Breathlessness, BelowThresholdO2, NormalBreathRate , and Nor- 

alO2Level , and, also, for the sake of simplicity, that no evolution 

efers to actions. This scenario is depicted by the state machine 

hown in Fig. 2 . 

In contrast, the concept of emergency scenario is used to de- 

ote an emergency case that involves a specific set of subjects, and 

hose evolution is depicted by an emergency development plan. 

efinition 5 (Emergency scenario) . An emergency scenario es is a 

uple 〈 esi, edp, sf 〉 , where esi is the emergency scenario identifier,

dp refers the identifier of the associated emergency development 

lan, whereas sf is a logic predicate, referred to as subject filter, 

hich specifies under which conditions a subject is involved in es . 

ike parametric predicates (see Section 3.3 ), subject filters are de- 

ned by composition of subject attributes using mathematical and 

ogical operators. 

At any point of the execution, an emergency scenario es is ei- 

her inactive or in one of the emergency situations referred to by 

he evolutions of the emergency development plan edp . More pre- 

isely, at specification time an emergency scenario es is inactive 

nd maintains this state until an event: (a) of type cet referred 

o by an evolution ev in edp.Ev , and (b) which refers to ⊥ as src

omponent, and to an emergency situation ems as trg component, 

ccurs. The event triggers the activation of the emergency scenario, 

nd the entrance in the emergency situation ems , which is then re- 

erred to as the new current stage of es . Afterward, when an event 

ccurs, which is referred to by an evolution ev’ among the possi- 

le evolutions of ems (i.e., any evolution that refers to ems within 

omponent src ), the current stage of the emergency scenario is up- 

ated. More precisely, if component trg of ev’ refers to ⊥ , the emer-

ency scenario is disabled, whereas if it refers to another emer- 

ency situation, such as, for instance, ems’ , this new emergency is 

ntered, and the current stage of es is updated to ems’ . 

It is worth noting that our model allows the specification of 

ultiple emergency scenarios per single application, therefore a 

ubject could be referred to by different emergency scenarios, as 

ell as by no scenario. In addition, multiple emergency scenar- 

os defined for an application could specify the same development 

lan, but different subjects. 
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Fig. 2. The stm diagram corresponding to the emergency development plan PulmonaryIssues . 
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xample 9. Let us consider the definition of the emergency sce- 

arios es 1 / es 2 , respectively specifying the possible involvement 

f patient Bob / Mary and of the medical staff operating in 

he nursing home, in emergency cases modeled by the emer- 

ency development plan PulmonaryIssues (see Example 8 ). Accord- 

ng to Definition 5 , es 1 can be specified as 〈 es 1 , PulmunaryIssues,

s.gid = patient ∧ s.uid = Bob) ∨ s.gid = medical_personnel 〉 , and simi-

arly, es 2 as 〈 es 2 , PulmunaryIssues, (s.gid = patient ∧ s.uid = Mary) ∨
.gid = medical_personnel 〉 . Although these emergency scenarios re- 

er to the same development plan, they represent emergency cases 

elated to two distinct patients, therefore, at any point in time, the 

urrent stage of es 1 could be different from the one of es 2 . 

Let us now consider the case of a subject s who issues an access 

equest ar . If at ar request time no emergency scenario refers to s ,

r all emergency scenarios which refer to s are inactive, s is said 

o be in an ordinary situation, and therefore ar is regulated by the 

ccess control policies introduced in Section 3.3 , which from now 

n are referred to as ordinary policies . 

In contrast, if at ar request time at least one of the emergency 

cenarios that refer to s is active the request ar is controlled by 

mergency policies . Emergency policies regulate the ability of a sub- 

ect involved in one or more emergency scenarios to send or re- 

eive MQTT messages. 

Emergency policies are formally defined as follows. 

efinition 6 (Emergency policy) . An emergency policy ep is a tu- 

le 〈 s, tf, exp, pr, esf, stf 〉 , where s, tf, exp, pr correspond to the

omonym components in Definition 1 , esf is an emergency sce- 

ario filter, namely an expression built referring to emergency sce- 

ario properties, resulting in a set of emergency scenarios that 

pecify the same emergency development plan, whereas stf is a 

ituation filter expression, which, by referring to emergency situ- 

tion properties, specifies the emergency situations to which ep is 

pplied. 

An emergency policy ep upon satisfaction of the parametric 

redicate exp grants to the subjects referred to by s the privilege 

o send or receive messages on topics included in tf , in any emer-

ency situation denoted by stf of the emergency scenarios specified 

y esf . 

xample 10. Let us now consider the specification of an emer- 

ency policy ep which grants external specialists access to phys- 

ological data of patients in severe conditions, with the aim to 

onsent to timely treatments. Let us assume that ep grants ac- 

ess to data of patients involved in emergency scenarios that 

pecify PulmonaryIssues as emergency development plan, and who 

re currently under the emergency situation DyspneaOxygen . Pol- 

cy ep can be specified as: 〈 specialist, +/physiological/#, true, read, 

dp = “PulmonaryIssues”, {DyspneaOxygen} 〉 . Based on Example 9 , 

ary and Bob are involved in the emergency scenarios es 1 and es 2 , 

hich specify PulmonaryIssues as emergency development plan. 
7 
herefore, according to ep a specialist can only access Bob’s/Mary’s 

ata when es 1 / es 2 specify DyspneaOxygen as current stage. 

Finally, let us shortly consider the process that allows a secu- 

ity administrator to specify emergency policies for a target MQTT 

nvironment. 

Based on Definition 6 , emergency policy specifications can only 

e achieved after having defined at least one emergency scenario. 

n turn, at least one emergency development plan should be spec- 

fied to define an emergency scenario. An emergency development 

lan can be defined following a step-wise process that starts with 

he identification of: i) a set of emergency situations depicting 

ossible stages of an emergency case, along with their associated 

everity levels. Afterward, the security administrator needs to es- 

ablish, for any considered emergency situation, if it can be entered 

s first stage of the emergency case, or if it can only be reached 

s a possible evolution of another emergency situation. Similarly, 

e/she needs to decide if any of the considered situations can 

volve into the resolution of the emergency case. Any evolution is 

nabled by the occurrence of events. In order to properly label all 

onsidered evolutions, it is first required to identify the involved 

vents and model the related event types. Finally, the modeling of 

he evolutions is completed with the possible specification of ac- 

ions. Action specification relies on the previously mentioned mod- 

ling of complex events types, as well as on simple transformation 

ules that allow converting complex events into MQTT publishing 

equests. 

Once the definition of emergency development plans has been 

ompleted, emergency scenarios are straightforwardly specified in- 

icating the set of subjects potentially involved in any considered 

mergency case. Afterward, the security administrator can finally 

ocus on emergency policy specifications. Emergency policies are 

pecified as ordinary access control policies, but they make explicit 

eference to the emergency situations where they apply. 

. System overview 

Our proposed framework includes multiple enforcement mon- 

tors, that are used to keep a reasonably low enforcement over- 

ead in scenarios where several clients are involved. They regulate 

he exchange of messages by MQTT clients of a monitored envi- 

onment, on the basis of the specified ordinary and emergency ac- 

ess control policies. A NoSQL datastore is employed to keep track 

f metadata related to emergency management, and access con- 

rol. More precisely, it stores: a) emergency scenarios along with 

elated current stages; b) primitive and complex event types; c) 

rdinary and emergency policies; and d) subject, object, and en- 

ironment attributes employed for policy specification. A module, 

enoted CEP interface, is used to manage the evolution of emer- 

ency scenarios, on the basis of interactions with the monitors and 

 CEP engine. The possible detection of events by the CEP engine is 

anaged by handlers embedded in the CEP interface. Any time an 

mergency scenario es is specified, two handlers are instantiated. 
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Fig. 3. A high-level view of the system architecture. 
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he former is employed to manage the possible update of the re- 

erred current stage of es , whereas, the latter to catch CEP engine 

otifications denoting that no update is required. Finally, the CEP 

nterface also embeds an MQTT publisher client responsible for is- 

uing selected event notifications (formatted as MQTT messages) 

o rightful subscriber clients. 

A high-level view of the system architecture is shown in Fig. 3 . 

In order to present the role of each component of the pro- 

osed framework, as well as the overall control flow, let us con- 

ider a simple scenario where users u 1 and u 2 respectively admin- 

ster MQTT clients c 1 and c 2 , which operate in an MQTT environ- 

ent that hosts a broker b . A high-level representation of the sys- 

em’s control flow for the considered scenario is provided in Fig. 4 , 

here a UML Sequence diagram is used to depict the main interac- 

ions that hold among the system’s stakeholders and components, 

long with the executed tasks. 

Let us assume that c 1 has been configured to publish messages 

n topic t , whereas c 2 to subscribe the reception of messages re- 

erring to t . c 1 and c 2 have been set up to connect with broker b

y means of the enforcement monitors m 1 and m 2 , respectively. 

In order to exchange messages, c 1 and c 2 need to connect with 

he MQTT broker b . Let us shortly consider the connection pro- 

ess of c 1 mediated by m 1 (the same process allows the connec- 

ion of c 2 mediated by m 2 ). The process starts with a connection 

equest issued by c 1 on behalf of u 1 , denoted as cp CN 
c 

1 . On receipt

f cp CN 
c 

1 , m 1 : 1) opens a communication channel with b , and an-

ther one with the CEP interface, to be used to convey any com- 

unication related to c 1 requests, 2) analyzes subject attributes in 

he intercepted packet header deriving the identity of the requester 

ubject, 3) forwards cp CN 
c 

1 to b . The broker authenticates c 1 and 

ends back an acknowledgment packet cp CA 
c 

1 to m 1 , which in turn 

orwards it to c 1 . 

Let us now assume that, once connected, c 1 sends a publish- 

ng request cp PB 
c 

1 on behalf of u 1 . On receipt of cp PB 
c 

1 , m 1 rec-

gnizes that cp PB 
c 

1 has been issued by a client, and redirects the 

equest to the CEP interface. More precisely, it prepares a com- 

osite packet (i.e., cp PB 
c ∗

1 ), which includes the intercepted request 

p PB 
c 

1 , and the objects s, o , and e , with fields corresponding to the

ubject, object, and environment attributes associated with the re- 

uest. It then issues the packet to the CEP interface and waits for a 

esponse. 

The CEP interface instantiates a control task responsible for the 

nalysis of cp PB 
c ∗

1 
. This task first extracts from cp PB 

c ∗
1 

the embedded 

bjects, and the original request cp PB 
c 

1 , and identifies the request- 

ng subject u 1 from the subject attributes. Afterward, it checks if 

p PB 
c 

1 matches the binding criteria of any specified primitive event 

ype in PET (cfr. Section 4 ). If no criterion is matched, the packet

annot trigger any emergency evolution, thus the control task no- 

ifies the monitor of the completion of the analysis. In contrast, 

f cp PB 
c 

1 is referred to by at least one primitive event type, the 

ask handles the generation of primitive event notifications bound 
8

o cp PB 
c 

1 . For any primitive event type pet in PET (see Section 4 )

hich specifies binding criteria satisfied by cp PB 
c 

1 , the control task 

erives an event notification en 

pet . The generation employs internal 

roperties of cp PB 
c 

1 and attributes extracted from cp PB 
c ∗

1 
referred to 

n the initialization expression pet.adf (see Section 4 for more de- 

ails). Let us denote with EN pet the set of event notifications gener- 

ted from cp PB 
c ∗

1 
. The control task delivers EN pet to the CEP engine, 

nd waits for the completion of the analysis of this set of prim- 

tive event notifications. As soon as the control task is notified of 

he analysis completion by the pair of handlers associated with any 

mergency scenario the control task notifies the monitor that the 

nalysis has been completed. The monitor can thus continue the 

rocessing of cp PB 
c 

1 (see Section 7.2 for more details). Upon re- 

eiving the acknowledgment, the monitor selects from the NoSQL 

atastore the emergency scenarios that refer to u 1 as an involved 

ubject. On the basis of the referred emergency situation of u 1 in 

ny of the active scenarios, monitor m 1 selects from the datastore 

ll emergency policies that apply to u 1 ’s request cp PB 
c 

1 . In con- 

rast, if there does not exist an active scenario among the selected 

nes, m 1 selects from the datastore all ordinary policies applicable 

o cp PB 
c 

1 . In both cases, m 1 then employs the enforcement mech- 

nism proposed in Colombo and Ferrari (2018) (see Section 3.3 ), 

uthorizing the publishing if at least one of the selected policies 

rants the access. 

Let us now assume that the publishing of cp PB 
c 

1 has been au- 

horized by m 1 . The message is therefore issued by m 1 to the bro-

er b , which, on the basis of the received subscriptions, forwards a 

opy of this packet, referred to as cp PB 
b , to c 2 . The packet is then

ntercepted by m 2 , which monitors the communication channel be- 

ween c 2 and b . Since the sender of cp PB 
b is b , m 2 derives and en-

orces the applicable policies without the intervention of the CEP 

nterface. Once the identity of the receiver subject u 2 has been de- 

ived, m 2 selects from the datastore the emergency scenarios that 

efer to u 2 as an involved subject. In any of the selected scenarios 

hich are not referred to as inactive, the monitor derives the cur- 

ent emergency situation of u 2 , and then selects from the datastore 

ll emergency policies that regulate the receiving of messages on 

opic t (i.e., the topic of cp PB 
b ) by u 2 in any of the selected emer-

ency situations. In contrast, if no active scenario is detected, the 

election targets all ordinary policies applicable to cp PB 
b . In both 

ases, m 2 then proceeds to apply the enforcement approach pro- 

osed in Colombo and Ferrari (2018) . 

. Enforcement 

Let us now focus in more details on selected aspects of the 

roposed enforcement mechanism, instrumental to the selection 

f the emergency policies applicable to an access request. Selected 

olicies are then enforced employing the mechanisms proposed in 

olombo and Ferrari (2018) . 

.1. Event detection 

A key functionality of our framework is its ability to handle the 

volution of emergency scenarios, on the basis of detected complex 

vents that trigger the entrance into specific emergency situations. 

ince an event of complex type can only occur when specific prim- 

tive events are observed, each corresponding to an MQTT client’s 

ublishing request, we now analyze core activities of the CEP inter- 

ace instrumental for event detection. These are executed any time 

n MQTT client’s publishing request intercepted by an enforcement 

onitor is forwarded to the CEP interface. More precisely, let us 

tart to consider the control task instantiated by the CEP interface 

n receipt of a packet cp PB 
∗ issued by an enforcement monitor. We 

emind that cp PB 
∗ includes a control packet cp PB and three objects, 

enoted s, o and e , with fields representing the subject, object, and 
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Fig. 4. System control flow for the exemplified scenario. 
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nvironment attributes associated with the publishing request con- 

ext (see Section 6 ). 

The control task starts managing the generation of primitive 

vent type notifications. This is achieved for all primitive event 

ypes belonging to PET which are bound to cp PB . A primitive event 

ype pet is selected iff the evaluation of the binding expression bcr 

f pet is satisfied by cp PB . 

Any selected primitive event type spet is then used to gener- 

te event notifications, specifying objects characterized by: 1) a 

ime annotation , used for event ordering purposes, 2) a payload , 

hich represents the event content, and 3) a type , which refers 

o the related event type name, implying that the structure of 

he event payload has to match the one specified within compo- 

ent adc of spet (see Section 3.2 ). The time annotation is straight- 

orwardly derived as the timestamp related to the reception of 

p PB 
∗. The type corresponds to the value referred to by the com- 

onent pet of spet . Finally, the payload is specified by referring to 

he content of component adf of spet . More precisely, the control 

ask initializes any attribute id referred to within component adf 

f spet (cfr. Section 4 ) to the value of the corresponding expression 

xp . 
9

xample 11. Let us consider the control task ct created at time rt , 

pon receipt of cp PB 
∗. Suppose that cp PB 

∗ embeds: i) a publishing 

equest cp PB on topic “physiological/respiratory”, with a payload that 

ncludes field respiratory initialized to 27, and ii) subject, object 

nd environment attributes indicating that cp PB has been issued 

t time st by a device that monitors patient Bob’s conditions. Fi- 

ally, let us also assume that PET includes the primitive event type 

espiratoryRate introduced in Example 6 . Since the binding expres- 

ion of RespiratoryRate is satisfied by cp PB , this primitive event type 

s selected for generating event notifications. The expressions in 

omponent adf of RespiratoryRate are thus evaluated for deriving 

he notification. As a consequence, the event notification Respirato- 

yRate@rt: {“bpm”:27, “time”:st, “patientID”:“Bob”} is generated. 

Once the generation process has been completed, the control 

ask issues the primitive event notifications to the CEP engine, and 

aits to be notified for the completion of the analysis of the deliv- 

red set of notifications. As soon as the pairs of handlers responsi- 

le for handling the evolution of any emergency scenario notify the 

ompletion, the control task responds to cp PB 
∗ with an acknowl- 

dge message, terminating the execution. 
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9 We remind that tp is an initialization expression built referring to any attribute 

in the payload of events of type cet . 
10 https://redis.io . 
11 https://www.espertech.com/esper . 
.2. Emergency management 

The CEP interface manages the evolution of any specified emer- 

ency scenario es by means of two event handlers, denoted as 

pdate-notifier and nochange-notifier (see Section 6 ). update-notifier 

anages the detection of complex events and the possible update 

f es ’s current stage, whereas, nochange-notifier keeps track of CEP 

ngine analysis cycles during which no complex event is detected. 

hese handlers are instantiated by the CEP interface at es specifi- 

ation time and then kept active as long as es belongs to the set of

anaged emergency scenarios. 

Each time the CEP engine completes the analysis of a deliv- 

red set of primitive event notifications one of these handlers is 

nvoked. 

update-notifier is invoked when, on receipt of a set of primi- 

ive event notifications, a complex event ce of type ecet is detected 

y the CEP engine, which is referred to by an evolution ev of es .

he handler is notified of the detected event, as well as of the 

et of primitive event notifications that have caused the event oc- 

urrence. The handler starts to select the current stage ems of the 

mergency scenario es from the datastore, as well as the evolution 

et of es . If es is not active, ems is initialized to ⊥ , whereas if es

s active, it is set to the current emergency situation of es . If there

xists an evolution ev whose components src and cet respectively 

efer to ems and ecet, update-notifier specifies the emergency sit- 

ation referred to within component trg of ev as the new current 

mergency situation of es , propagating the update to the datastore. 

et us now denote with ct the control task that has delivered the 

et of primitive event notifications which triggered the detection 

f ce . Once the update has been performed, if ev specifies an ac- 

ion ac, update-notifier gets from ct a copy of the composite packet 

p PB 
∗ used for generating the notifications that caused the occur- 

ence of ce . It then instantiates an execution manager task, which 

synchronously manages the execution of ac , following the process 

etailed in Section 7.3 , to which the derived copy is passed. Finally, 

pdate-notifier issues the analysis completion notification to ct . 

In contrast, the handler nochange-notifier is invoked if, upon re- 

eiving a set of primitive event notifications, the CEP engine does 

ot detect events of complex types referred to by an evolution of 

s . The handler is notified of the analyzed set of primitive event 

otifications, and, in turn, it notifies the analysis completion to the 

ontrol task which delivered these notifications. 

xample 12. Let us assume that on receipt of the event noti- 

cation Respiratory@rt presented in Example 11 , the CEP engine 

etects an event of type Breathlessness , which is referred to by 

he evolutions of the emergency scenario es 1 (see Example 9 ), as 

his specifies PulmonaryIssues as emergency development plan (see 

xample 8 ). As a consequence, the handler update-notifier config- 

red for es 1 is notified of the detected event, as well as of the

rimitive event notification Respiratory@rt that caused the detec- 

ion. In contrast, the handler nochange-notifier is not invoked. Let 

s now suppose that es 1 is not active. The handler initializes ems 

o ⊥ , and then checks if an evolution exists, which refers to Breath- 

essness within component cet , and to ⊥ within component src . As 

hown in Fig. 2 , such evolution exists, and specifies Dyspnea as a 

arget emergency situation. As a consequence, update-notifier acti- 

ates es 1 specifying the emergency situation Dyspnea as the new 

urrent stage of the emergency scenario. Afterward, since the con- 

idered evolution does not refer to any action, update-notifier noti- 

es ct of the completion of the analysis. 

.3. Action execution 

Let us now focus on the execution of actions associated with 

mergency evolutions. We hereby present the process imple- 
10 
ented by the execution manager task, which is responsible to 

andle action executions. Execution manager is invoked any time 

he current stage of an emergency scenario es is updated, and 

omponent act (see Section 5 ) of the emergency evolution ev that 

aused the update refers to an action. 

Let us assume that the execution manager has been invoked to 

andle the execution of a generic action ac . At start time, the ex- 

cution manager derives three event notifications from the copy 

f cp PB 
∗ received as input (see Section 7.2 ). The derived notifica- 

ions refer to a predefined event type, respectively characterized 

y fields corresponding to the subjects, objects and environment 

ttributes embedded in cp PB 
∗. The generated events’ notifications 

re delivered to the CEP engine, whereupon the execution man- 

ger stays on hold waiting for a CEP engine notification. If the 

EP engine notifies that no event has been detected, the execu- 

ion manager immediately terminates. In contrast, on receipt of an 

vent ecet, execution manager generates a MQTT publishing request 

p PB 
CEP on the basis of ecet content. The topic of cp PB 

CEP is initial- 

zed to the result of the evaluation of the expression referred to 

y component tp of ac (see Section 5 ). 9 Similarly, the payload of 

p PB 
CEP is derived iterating over the initialization expressions re- 

erred to by component pl of ac , each targeting a different pay- 

oad’s attribute. 

Finally, cp PB 
CEP is delivered to the broker of the monitored 

QTT environment by a MQTT publisher embedded in the CEP in- 

erface (see Section 6 ) and connected to the MQTT broker at sys- 

em initialization time. 

xample 13. Let us consider again the case introduced in 

xample 12 , now assuming that the evolution which in 

xample 12 has caused the activation of es 1 refers to action 

evereBreathlessnessNotifier (see Example 7 ). After the current stage 

f es 1 is updated, update-notifier instantiates an execution manager 

ask emt providing as input a copy of cp PB 
∗ derived from ct , and

he action SevereBreathlessnessNotifier referred to by the evolution. 

mt first derives a primitive event notification from a built-in 

rimitive event type that does not specify binding expressions, but 

imply maps as payload fields the subject, object and environment 

ttributes in cp PB 
∗. Then, emt delivers the derived notifications to 

he CEP engine. On receipt of these event notifications, the CEP 

ngine notifies the detection of an event SevereBreathlessness ce . 

s a consequence, emt generates an MQTT publishing request 

p PB 
CEP on topic critical/severebreathlessness , with a payload that 

aps the one of the just detected events. Finally, the generated 

acket is issued to the broker by the MQTT client administered by 

he CEP interface. 

. Experimental evaluation 

In this section, we first present the application of our frame- 

ork to the nursing home scenario introduced in Section 2 , then 

e evaluate the framework performance with a set of experiments 

ased on the same application scenario. 

Our experiments rely on a prototype of the framework intro- 

uced in Section 6 . Our prototype includes an enforcement mon- 

tor, defined as an extended version of the monitor presented 

n Colombo and Ferrari (2018) , which here has been redesigned 

o enforce emergency policies. Metadata related to access control 

nd emergencies are managed by an instance of Redis, 10 a popular 

n-memory key-value datastore. Event detection is carried out by 

he CEP engine Esper 11 , using the Event Processing Language (EPL) 

https://redis.io
https://www.espertech.com/esper
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Table 3 

Primitive event types specified for the case study. 

pet adc bcr adf description 

Result {“pid”: string, 

“result”: boolean, 

“tDate”: date, 

“reqId”: long, 

“time”: long} 

t.TopicName. 

includes(“result”) 

{“pid”:o.patientID, 

“result”:t.Payload.result, 

“tDate”:t.Payload.testDate, 

“reqId”:t.Payload.reqId, 

“time”:e.time} 

Shows the results of a COVID-19 

test to which a patient has 

undergone. 

Prescription {“pid”: string, 

“tDate”: date, 

“reqId”: long, 

“time”: long} 

t.TopicName. 

includes(“prescription”) 

{“pid”:o.patientID, 

“tDate”:t.Payload.testDate, 

“reqId”:t.Payload.reqId, 

“time”:e.time} 

Shows the prescription of a 

COVID-19 test for a patient. 

Location {“pid”: string, 

“pos”: string, 

“time”: long} 

t.TopicName. 

includes(“location”) 

{“pid”:o.patientID, 

“pos”:t.Payload.location, 

“time”:e.time} 

Shows the room where a patient 

is located at specified time 

Temperature {“pid”: string, 

“temp”: float, 

“time”: long} 

t.TopicName. 

includes(“temperature”) 

{“pid”:o.patientID, 

“temp”:t.Payload.temperature, 

“time”:e.time } 

Shows the body temperature of a 

patient at a specified time. 

RespiratoryRate {“pid”: string, 

“bpm”: float, 

“time”: long} 

t.TopicName. 

includes(“respiratory”) 

{“pid”:o.patientID, 

“bpm”:t.Payload.respiratory, 

“time”:e.time} 

Shows the respiratory rate of a 

patient at a specified time. 

EstimatedSpO2 {“pid”: string, 

“SpO2”: float, 

“time”: long} 

t.TopicName. 

includes(“saturation”) 

{“pid”:o.patientID, 

“SpO2”:t.Payload.saturation, 

“time”:e.time} 

Shows the peripheral oxygen 

saturation of a patient at a 

specified time. 

ReqAttSet {“cid”: string, 

“uid”: string, 

“gid”: string, 

“pSet”: Set(string), 

“relativeOf”: Set(string), 

“pid”: string, 

“ts”: long } 

⊥ {“cid”: s.cid, 

“uid”: s.uid, 

“gid”: s.gid, 

“pSet”: s.pSet, 

“relativeOf”: s.relativeOf, 

“pid”: o.patientId, 

“ts”: e.time} 

Maps the set of subject, object 

and environments attributes 

which characterize access requests 

in the considered application 

scenario. 
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or implementing queries able to detect events of complex types. 

he CEP interface has been developed in Java, and allows man- 

ging the evolution of emergency scenarios on the basis of MQTT 

ontrol packets forwarded by the enforcement monitor and events 

etected by the CEP engine. 

.1. The case study 

The considered MQTT-based IoT application scenario allows de- 

ecting early symptoms of COVID-19 in nursing home patients, and 

racking their close contacts. Due to the high COVID-19 mortal- 

ty in extended care units ( European Centre for Disease Preven- 

ion and Control, 2020 ), in such environments, COVID-19 diffu- 

ion is contrasted through the preventive isolation of any identi- 

ed possibly infected patient. The quarantine protocol, which is 

ormally applied to confirmed COVID-19 cases, is here extended 

o any patient with early symptoms of COVID-19 who has not yet 

ndergone a test or is still waiting for a result, and to any patient

mong his/her recent close contacts. 

We assume that sensors worn by patients monitor physiological 

ata, such as patients’ temperature, respiratory rate, and periph- 

ral oxygen saturation, whereas patients’ movements are tracked 

hrough the interaction of patients’ bracelets with proximity sen- 

ors deployed in any room of the nursing home. Additional ex- 

hanged data include the prescriptions of COVID-19 tests for nurs- 

ng home patients, the related results, treatment options commu- 

icated to patients, and patients’ consent to proceed. We assume 

hat all devices and software modules that generate data are pro- 

ided with an MQTT interface, and data are exchanged by means 

f the MQTT protocol. Table 3 exemplifies a selection of primitive 

vent types specified for the above-mentioned data, each denoting 

 class of primitive events derived from MQTT messages on given 

opics exchanged in the nursing home environment. Column pet 

pecifies the identifier of the considered event type, adc declares 

ll fields that compose the payload of the represented event class, 

cr defines the conditions to be met by an MQTT message for de- 

iving an event of the represented class, and finally, adf specifies 

he expressions that allow the initialization of payload fields. 
11 
Different groups of subjects are involved in the considered ap- 

lication scenario. Physicians and nurses in the medical staff of the 

ursing home access patients’ data and issue communications by 

eans of a mobile app. Similarly, external specialists use an app 

o remotely check patients’ conditions and to communicate possi- 

le treatments. Patients can use an app to check their own health 

tatus. The app can also be used by registered relatives of patients 

ubject to COVID-19 quarantine, to be updated on their kin condi- 

ions. 

We model the possible evolution of a COVID-19 case as an 

mergency development plan characterized by the following emer- 

ency situations: 

• Suspected COVID-19 , is an emergency situation with moderate 

severity (level 2), related to a patient who has had COVID-19 

symptoms in the last days; 

• Possible COVID-19 is an emergency situation with mild severity 

(level 1) related to a patient who has been referred to as close 

contact of a suspected or confirmed COVID-19 patient; 

• COVID-19 asymptomatic is an emergency situation with consid- 

erable severity (level 3), related to a confirmed COVID-19 pa- 

tient with no symptom; 

• COVID-19 symptomatic is an emergency situation with high 

severity (level 4), related to a confirmed symptomatic COVID- 

19 patient. 

• Severe COVID-19 is an emergency situation with critical sever- 

ity (level 5), related to a symptomatic COVID-19 patient with 

severe symptoms. 

The possible evolution of a COVID-19 case is represented by 

he state machine in Fig. 5 , where emergency situations are rep- 

esented as states, and evolutions as transitions. 

Multiple emergency scenarios have then been defined (one sce- 

ario per patient), which refer COVID-19 case as emergency devel- 

pment plan, and a set of involved subjects that includes: a patient 

 , the medical staff of the nursing home that takes care of p , the

xternal specialists who could be consulted, and the close relatives 

uthorized by p to receive information about his/her health condi- 

ions. 
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Fig. 5. State machine representing the possible evolution of a COVID-19 case. 

i

o

t

1

u  

t

d

t

C

s

p

1

a

s

i

b

A

t

o

t

r

e

i

e

e

S

e

w

s

t

t

i

w

fi

c

t

p

o

a

M

n

C

i

A

p

1

t

f

t

t

m

p

p

p

o

M

b

(

t

p

r

C

i

v

L

t

c

e

t

m  

t

i

r

i

p

i

p

w

m

r

C

1

c

m

l

t

t

p

12 This corresponds to the length of the interval between two consecutive sam- 
A COVID-19 case scenario related to patient p can be activated 

f p shows a COVID-19 symptom or p is referred to as close contact 

f a suspected or confirmed COVID-19 patient. The former condi- 

ion causes the entry into emergency situation Suspected COVID- 

9 , whereas the latter into Possible COVID-19 . Both emergency sit- 

ations imply the need to isolate p and to let p take a COVID-19

est. If the test is negative, either emergency situations are resolved 

eactivating the emergency scenario, whereas, in case of a posi- 

ive result with /without recent symptoms the emergency situation 

OVID-19 symptomatic / COVID-19 asymptomatic is entered. The pas- 

age from COVID-19 symptomatic to COVID-19 asymptomatic is only 

ossible if, for some consecutive days, p does not show COVID- 

9 symptoms, whereas the opposite transition occurs as soon as 

 symptom is detected. If within COVID-19 symptomatic emergency 

ituation p shows clear signs of aggravation, the emergency evolves 

nto a Severe COVID-19 case. The backward transition is only possi- 

le if, for some consecutive days, no severe symptom is observed. 

 COVID-19 case related to p is resolved in case of negative result 

o a COVID-19 test. 

The evolution of a COVID-19 case is triggered by the occurrence 

f complex events. Table 4 exemplifies a selection of complex event 

ypes for the considered scenario, leveraging on primitive events 

eported in Table 3 . Column cet specifies the name of the consid- 

red complex event type, adc specifies the set of fields compos- 

ng the payload of the represented events, ets indicates the set of 

vent types referred to in the specification, whereas exp models 

vent specifications using the abstract event algebra introduced in 

ection 3.2 . Event types reported in Table 4 consider classes of 

vents denoting: the presence / absence of COVID-19 symptoms 

ith various severities, the activation of a COVID-19 case, the re- 

ult of the last COVID-19 test to which a patient has undergone, 

he rooms recently visited by a patient, and all contacts/close con- 

acts of a patient in the last days. 

The analysis of physiological and proximity data allows deriv- 

ng all patients who recently have had symptoms of COVID-19, as 

ell as those who have had close contact with a suspected or con- 

rmed COVID-19 patient. 

In order to promptly contrast COVID-19 diffusion, all suspected 

ases and their close contacts have to be immediately reported to 

he medical staff so that physicians could promptly isolate these 

atients and prescribe a test, and they can be promptly informed 

f their condition. This is obtained through the modeling of the 

ctions WarnActivation and NotifyCloseContact , shown in Table 5 . 

ore precisely, at the early detected symptoms of COVID-19, War- 

Activation publishes an MQTT message to inform the suspected 

OVID-19 patient and his/her attending physicians to be involved 

n an active emergency scenario. The action converts events of type 

ctivation into MQTT messages, which, within the payload fields 

id and reqId , simply denote the identifier of the suspected COVID- 

p

12 
9 patient and the timestamp at which the case has been de- 

ected. In contrast, NotifyCloseContact publishes an MQTT message 

or any detected close contact of the patient who has just entered 

he emergency situations Suspected COVID-19 and COVID-19 asymp- 

omatic . The action converts events of type CloseContact into MQTT 

essages. The specification of CloseContact (cfr. Table 4 ) shows a 

ossible way to derive the close contacts of a patient p . For the 

roposed calculation we assume that proximity sensors check the 

resence of patients in any room of the nursing home at a rate 

f one sampling per second, and these data are then published as 

QTT messages. The presence of a patient in a room is notified 

y primitive events of type Location , which also report the room 

specified by field pos ), date, and time of the observation. Through 

he specification of complex event type VisitedRoom , we pick any 

rimitive event of type Location observed in the last 10 days, which 

efers to the presence of p . In contrast, any complex event of type 

ontact notifies that a pair of patients, which includes p , have been 

n close contact for 1 s, 12 and reports all data related to the obser- 

ation. A Contact event is derived from a primitive event of type 

ocation which notifies that, at the time specified by an event of 

ype VisitedRoom , another patient was in the same room. Finally, 

omplex events of type CloseContact are derived by counting all 

vents of type PossibleContact which refer to the same pair of pa- 

ients and date. If the referred pair of patients have spent together 

ore than 15 min (900 s) in a day, they are notified as close con-

acts. 

Manifold privileges are granted to medical personnel operating 

n the nursing home, as well as to patients. A selection of the cor- 

esponding ordinary policies is reported in Table 6 . For any pol- 

cy p , column s refers to the subjects who can benefit from the 

rivileges granted by p, tf shows the topic filter expression denot- 

ng the topics of the protected messages, exp shows the parametric 

redicate that specifies under which conditions p grants the access, 

hereas pr shows the read /write privilege granted by p . 

According to these policies, patients can receive, through their 

obile app, communications related to: i) test prescriptions and 

esults, ii) warning messages informing them to be suspected of 

OVID-19 or to have been referred to as close contact of a COVID- 

9 case, iii) medical bulletins, and iv) treatment options. Patients 

an also use the app to give consent to undergo specific treat- 

ents. 

Additionally, any physician, through his/her mobile app, is al- 

owed to: i) monitor the physiological conditions of his/her pa- 

ients, ii) prescribe a COVID-19 test for his/her patients and receive 

he results, iii) receive notifications issued by the monitoring ap- 

lication, reporting the activation of new COVID-19 cases, iv) illus- 
lings by proximity sensors. 
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Table 4 

Complex event types specified for the case study. 

cet adc ets exp 

Symptom {“pid”: string} {Temperature, 

RespiratoryRate, 

EstimatedSpO2} 

π T.pid ( σ (maxT > = 38 ∨ maxBpm > = 25 ∨ maxSpO2 < 0.95))( 

T.pid G max(bpm) as maxBpm, max(temp) as maxT, max(SpO2) as maxSpO2 ( 

σ T.pid = R.pid ∧ R.pid = S.pid(RespiratoryRate pe as R ∧ 
Temperature pe as T ∧ EstimatedSpO2 pe as S) 

) 

)) now 
now - 2 days 

Shows any patient who has had COVID-19 symptoms in the last 2 days. 

NoSymptom {“pid”: string} {Temperature, 

RespiratoryRate, 

EstimatedSpO2} 

π T.pid ( σ (maxT < 38 ∧ maxBPM < 25 ∧ maxSpO2 ≥95)( 

( R.pid G max(bpm) as maxBpm, max(temp) as maxT, max(SpO2) as maxSpO2 ( 

σ T.pid = R.pid ∧ R.pid = S.pid(RespiratoryRate pe as R ∧ 
Temperature pe as T ∧ EstimatedSpO2 pe as S) 

) 

)) now 
now - 2 days 

Shows any patient who did not show COVID-19 symptoms in the last 2 days. 

SevereSymptom {“pid”: string, 

“bpm”: float} 

{RespiratoryRate} πpid, bpm ( σ bpm > 30 (RespiratoryRate pe )) now 
now - 2 days 

Shows any patient who has had severe breathlessness episodes in the last two days, along with the observed respiratory rate. 

NoSevereSymptom {“pid”: string} {RespiratoryRate} πpid ( σ maxB < 30 ( pid Gmax(bpm) as maxB (RespiratoryRate pe ))) now 
now-2 days 

Shows any patient who did not show severe breathlessness episodes in the last two days. 

Activation {“pid”: string, 

“reqId”: long} 

{ReqAttSet} πpid, ts as reqId (RequestAttribute ce ) 

Denotes the need to isolate a patient and let him/her to undergo a COVID-19 test 

UnderTest {“pid”: string} {LastTest, 

Activation, 

Prescription} 

π L.pid ( 

σ L.pid = P.pid ∧ L.reqId = P.reqId ∧ LP.time > P.time ( 

Prescription ce as P ∧¬ LastTest ce as L ∧¬ Prescription ce as LP) 

∨ σ L.pid = A.pid ∧ A.reqId = L.reqId ∧ LA.reqId > A.reqId ( 

Activation ce as A ∧¬ LastTest ce as L ∧¬ Activation ce as LA) 

) 

Shows any patient who is waiting for the results of a test or who is going to undergo a COVID-19 test. 

LastTest {“pid”: string, 

testDate: date, 

reqId: long, 

result: boolean} 

{Result} π LR.pid, LR.testDate, R.reqId, R.result ( 

σ (LR.pid = R.pid) ∧ (LR.tDate = R.tDate) ( 

( pid G max(tDate) as testDate (Result pe )) as LR 

∧ Result pe as R 

) 

) 

Specifies the results of the last COVID-19 test of a patient. 

Positive {“pid”: string } {LastTest, 

UnderTest} 

π L.pid ( σ L.pid = U.pid ∧ L.result ( ¬ UnderTest ce as U ∧ LastTest ce as L)) 

Shows any patient whose last COVID-19 test is positive, for whom no new test has been reserved. 

Negative {“pid”: string } {LastTest, 

UnderTest} 

π L.pid ( σ L.pid = U.pid ∧¬ L.result ( ¬ UnderTest ce as U ∧ LastTest ce as L)) 

Shows any patient whose last COVID-19 test is negative, for whom no new test has been reserved. 

VisitedRoom {“pid”: string, 

“pos”: string, 

“time”: datetime, 

“date”: date, 

“ts”: long} 

{Location, 

ReqAttSet} 

π L.pid, pos, time, getDate(time) as date, ts ( 

σ R.pid = L.pid (Location as L ∧ ReqAttSet pe as R) 

) now 
now - 10 days 

Shows any room visited by a patient in the last 10 days, along with the time at which he/she was in the room. 

Contact {“pid”: string, 

“rpid”: string, 

“pos”: string, 

“time”: datetime, 

“date”: date, 

“ts”: long} 

{Location, 

VisitedRoom, 

ReqAttSet} 

π L.pid, V.pid AS rpid, V.pos, V.time, V.date, V.ts ( 

σ (V.pos = L.pos) ∧ (V.time = L.time) ∧ (V.pid � = L.pid) ∧ (V.pid = R.pid) ∧ (V.ts = R.ts) ( 

Location pe as L ∧ VisitedRoom ce as V ∧ ReqAttSet pe as R 

) 

) 

Shows any patient who has met patient rpid in the last 10 days, as well as the room and time at which the meeting occurred. 

CloseContact {“pid”: string, 

“rpid”: string, 

“date”: datetime, 

“duration”: float, 

“ts”: long} 

{Contact, 

ReqAttSet} 

πC.pid, C.rpid, C.date, num_of_1sec_intervals as duration, P.ts ( 

σ num_of_1sec_intervals > 900 ( 

C.pid, C.rpid, C.date, C.ts Gcount( ∗ ) as num_of_1sec_intervals ( 

σ (C.rpid = R.pid) ∧ (C.ts = R.ts) (Contact ce as P ∧ ReqAttSet pe as R) 

) 

) 

) 

Shows any patient who, cumulatively, in a day, has stayed close to patient rpid for at least 15 min, along with the cumulative duration of these meetings, and the date 

when they occurred. 

13 
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Table 5 

Actions involved in the COVID-19 case study. 

aid cet tp pl 

NotifyCloseContact CloseContact closecontact {“pid”: CloseContact ce .pid} 

WarnActivation Activation warning {“pid”: Activation ce .pid, “time”: Activation ce .reqId} 

Table 6 

Ordinary policies for the nursing home application. 

s tf exp pr description 

patient prescription o.patientId == s.uid r Allows patients to be informed of COVID-19 tests they must undergo. 

patient result o.patientId == s.uid r Allows patients to get the results of COVID-19 test they underwent. 

patient warning o.patientId == s.uid r Allows patients to be warned of having activated a COVID-19 case. 

patient closecontact o.patientId == s.uid r Allows patients to be warned of being close contacts of suspected / confirmed COVID-19 

cases. 

patient treatment o.patientId == s.uid r Allows patients to be informed of treatment options. 

patient consent o.patientId == s.uid w Allows a patient to consent to undergo a treatment. 

medical_personnel physiological/# o.patientId ∈ s.pSet r Allows physicians to access physiological data of their patients. 

medical_personnel prescription o.patientId ∈ s.pSet w Allows physicians to prescribe COVID-19 tests for their patients. 

medical_personnel result o.patientId ∈ s.pSet r Allows physicians to receive COVID-19 test results of their patients. 

medical_personnel warning o.patientId ∈ s.pSet r Allows physicians to be notified of patients’ COVID case activations. 

medical_personnel treatment o.patientId ∈ s.pSet w Allows physicians to communicate treatment options to their patients. 

medical_personnel consent o.patientId ∈ s.pSet r Allows physicians to collect the consent from their patients. 

medical_personnel bulletin o.patientId ∈ s.pSet w Allows physicians to publish medical bulletins for their patients. 

medical_personnel closecontact o.patientId ∈ s.pSet r Allows physicians to be warned of patients identified as close contact of a suspected / 

confirmed COVID-19 case. 

Table 7 

Emergency policies for the COVID-19 case study. 

s tf exp pr esf stf 

medical_personnel location o.patientId ∈ s.pSet r edp = “COVID-19 case” All 

Allows medical personnel to check the position of their patients. 

external specialist physiological/# true r edp = “COVID-19 case” {COVID-19 symptomatic, 

Severe COVID-19} 

Allows external specialists to access physiological data of overt COVID-19 patients. 

relative bulletin o.patientId ∈ s.relativeOf r edp = “COVID-19 case” All 

Allows relatives to receive the medical bulletin of their kin. 

guardian treatment o.patientId ∈ s.guardianOf r edp = “COVID-19 case” {Severe COVID-19} 

Allows the guardian of a patient in severe conditions to access treatment options. 

guardian consent o.patientId ∈ s.relativeOf w edp = “COVID-19 case” {Severe COVID-19} 

Allows the guardian of a patient in severe conditions to give the consent to made his/her kin undergo specific treatments 

guardian result o.patientId ∈ s.guardianOf r edp = “COVID-19 case” {Severe COVID-19} 

Allows the guardian of a patient in severe conditions to access his/her test results. 

t

c

t

t

c

w

a

s

g

d

t  

t

c

i

p

t

w

t

g

a

c

t

t

p

m

h

t

t

t

g

t

rate treatment options to any of his/her patient, and collect the 

onsent to proceed with the treatment, v) issue medical bulletins 

o his/her patients, informing each of them about his/her condi- 

ions, and vi) access notifications issued by the monitoring appli- 

ation, denoting that one of his/her patients has had close contact 

ith a suspected or confirmed COVID-19 case. 

Subjects involved in an emergency situation can benefit from 

dditional privileges. A selection of emergency policies for the con- 

idered application scenario is reported in Table 7 . For any emer- 

ency policy ep , column esf and stf specify expressions respectively 

enoting the set of emergency scenarios and emergency situations 

o which ep is applied, whereas columns s, tf, exp , and pr maintain

he same meaning as in Table 6 . 

Under any of the considered emergency situations, physicians 

an access the position of their patients, as the efficient local- 

zation of suspected or possible COVID-19 patients allows their 

rompt isolation, and prevent infection diffusion. To identify effec- 
14 
ive treatments for overt COVID-19 patients, or to identify patients 

ho could require hospitalization, external specialists are also au- 

horized to monitor physiological data of patients under the emer- 

ency situations C OVID-19 symptomatic and Severe COVID-19 . 

In order to better bridge the gap between patients under quar- 

ntine protocol and their families, relatives are made aware of the 

onditions of their kin who cannot be visited during the quaran- 

ine. The access to the medical bulletin of a patient under any of 

he considered emergency situations is thus extended to a set of 

reregistered patient’s relatives. Relatives can also play a funda- 

ental role for patients in severe conditions, who, due to their 

ealth status, are unable to understand or take actions, acting as 

heir guardians. Privileges granted to patients in ordinary situa- 

ions are then applied to guardians of patients in critical condi- 

ions. For instance, in a Severe COVID-19 emergency situation, a 

uardian receives communication of the patient’s treatment op- 

ions and consents to specific treatments on his/her behalf. 
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13 Access control decisions depend on the policies applicable to access requests, 

which in turn depend on the current stage of the emergency scenarios where the 

requesting subjects are involved. The evolution of emergency scenarios cannot rely 

on predictions. It has to depend on occurring events to ensure the correctness and 

completeness of granted authorizations. 
.2. Experiments 

Let us now focus on the experiments we have carried out to 

valuate the efficiency of the proposed access control approach, 

onsidering as a reference scenario the case study introduced in 

ection 8.1 . 

For our performance evaluations we focus on the following 

spects: transmission time , which denotes the time a published 

essage takes for being received by a rightful subscriber, time 

verhead , which quantifies the time requested by the enforce- 

ent monitor to take a decision related to an access request, and 

hroughput , namely, the average number of MQTT control packets 

er seconds which are analyzed by our framework. 

Transmission time provides a first indication of the framework’s 

sability, as it allows quantifying the overall communication la- 

ency. However, it is a quite coarse-grained property, as it shows 

he total duration of multiple communication phases. A client to 

lient ( c2c ) communication in an MQTT environment is articulated 

nto an initial client to broker ( c2b ) communication phase, during 

hich a publishing request is issued by a client to broker, followed 

y a broker to client ( b2c ) phase, within which the broker forwards

 copy of the received message to any rightful subscriber. Each 

acket issued by a client or forwarded by a broker is intercepted 

y the enforcement monitor, which allows the transit only if ap- 

licable policies grant it. Therefore, to assess the impact of policy 

nforcement on the overall transmission time, for any c2c commu- 

ication, we keep track of the time overhead introduced by the en- 

orcement monitor during the phases c2b and b2c , and, compre- 

ensively, during the whole c2c communication. Similarly, through- 

ut is calculated with reference to the communication phases c2b, 

2c , and c2c . 

The assessment of our framework performance refers to a target 

etup of the monitoring application, which aims at supporting a 

ealistic deployment tailored for a nursing home of big size. Our 

mpirical evaluation is then complemented with a further setup, 

ntroduced to show the framework behavior in an extreme case 

onfiguration of the monitoring application. 

Target setup considers a subject set of 300 patients, 60 health- 

are workers among nurses and physicians, 60 relatives, and 6 spe- 

ialists. In contrast, in the extreme case setup, any subject group’s 

umerousness is multiplied by 5. 

Subjects communication in both setups is regulated by a policy 

et that includes the ordinary and emergency policies presented in 

ection 8.1 , and a few additional ones introduced to grant to all 

ursing home devices the privilege to publish sensed data. 

Our experiments refer to a deployment that includes 3 enforce- 

ent monitors, each managing the connections of one-third of the 

ubjects of each subject group. Time overhead, transmission time, 

nd throughput are calculated at each enforcement monitor inter- 

ace with the nursing home’s MQTT environment. For our experi- 

ents, MQTT clients have been configured in such a way that, in 

he whole MQTT environment, on average, 60 publishing requests 

er second are generated, and the analyzed scenario refers to a 

eriod of 30 days of simulated executions of the monitoring appli- 

ation. 

A detailed view of the computed performance measures is pre- 

ented in Table 8 , whereas Fig. 6 shows, at aggregate level, their 

rend in the considered setups. In the target setup, on average, a 

ransmission time of ∼43 ms has been observed, of which, almost 

31 ms is due to the enforcement overhead. Overall, in this setup, 

ur framework analyzes ∼96 control packets per second. In con- 

rast, the transmission time grows up to ∼71 ms in the extreme 

ase setup, with an average time overhead of ∼69 ms, and a to- 

al throughput which decreases to ∼88 cp/s. As visible in Fig. 6 , in

ach setup, the 3 enforcement monitors almost introduce the same 

ime overhead, show similar transmission times, and comparable 
15 
acket processing rates. For each monitor, time overhead related 

o phase c2b (shown in red) is significantly higher than in phase 

2c (in blue), whereas, even though with a less marked difference, 

he opposite trend is observed with the throughput related to the 

2b and b2c phases (respectively shown in yellow and green). This 

ehavior is justified by the enforcement monitor activities in each 

ommunication phase. Indeed, in the c2b phase, on receipt of a 

ontrol packet, in order to select and enforce the applicable poli- 

ies, the enforcement monitor has to interact with the CEP system 

o check whether the intercepted packet causes the evolution of 

ny emergency scenario, whereas, in the b2c phase no interaction 

ith the CEP system is required. It is worth noting that the above- 

entioned differences are more accentuated in the extreme case 

etup, since, due to a higher number of patients to be monitored, 

he number of instances of COVID-19 case scenarios to be managed 

y the CEP interface is significantly higher. 

Overall, our experiments have shown satisfactory results in both 

etups. The observed enforcement overhead is reasonably low even 

n the extreme case, where the size of the monitored environment 

s not negligible. 

.3. Results and discussion 

The case study and related experimental evaluation have shown 

he feasibility of our approach, timely emergency identification, 

nd reasonably efficient policy enforcement. However, the experi- 

nce has also highlighted a few framework limitations that we dis- 

uss in the remainder of this section, along with possible strategies 

o handle them. 

Preparedness The first shortcoming is the lack of services that 

ould favor timely planning of countermeasures to potential ag- 

ravations of an emergency. The proposed approach has been de- 

igned considering the correctness of the enforcement mechanism 

s the primary requirement. Although our experimental evalua- 

ion has shown the ability of the system to operate with almost 

eal-time data, the proposed emergency management mechanism 

as an inherently reactive nature. Indeed, emergency situations 

re faced only when these have occurred. To enhance subjects’ 

reparedness for possible emergency worsening, our framework 

an be complemented with additional modules, that analyze the 

essages exchanged in a target environment to predict the pos- 

ible evolutions of an emergency scenario before the CEP system 

bserves them. Although not exploitable for access control pur- 

oses, 13 this strategy could make emergency management proac- 

ive, favoring the organization and enactment of timely counter- 

easures. For instance, referring to the COVID-19 case scenario 

see Section 8.1 ), let us consider the case of a patient involved 

n the emergency situation COVID-19 symptomatic . Based on the 

mergency development plan represented in Fig. 5 , such an emer- 

ency situation can evolve into Severe COVID-19 if specific symp- 

oms occur. According to the specification of the complex event 

evereSymptom proposed in Table 4 , such an evolution is triggered 

y severe breathlessness episodes, during which the respiratory 

ate goes over the threshold of 30 breaths per minute. Patients 

ith severe symptoms could require particular treatments, such 

s supplemental oxygen, or it could even be necessary to move 

hem to a hospital for more intensive care. However, it may hap- 

en that these measures could not be immediately applicable. For 

nstance, transfers could be constrained by the availability of an 

mbulance, whereas oxygen administration by a limited stock of 
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Table 8 

Observed performance measures. 

Phase Monitor 1 Monitor 2 Monitor 3 Avg Tot 

Target setup Time 

overhead 

c2b 25.25 ms 25.74 ms 25.35 ms 25.45 ms –

b2c 5.1 ms 5.17 ms 5.15 ms 5.14 ms –

c2c 30.36 ms 30.91 ms 30.50 ms 30.59 ms –

Transmission time c2c 40.48 ms 44.49 ms 44.09 ms 43.02 ms –

Throughput c2b 14.75 cp/s 14.69 cp/s 14.72 cp/s 14.72 cp/s 44.16 cp/s 

b2c 17.28 cp/s 17.26 cp/s 17.29 cp/s 17.28 cp/s 51.83 cp/s 

c2c 32.03 cp/s 31.94 cp/s 32.01 cp/s 32.00 cp/s 95.99 cp/s 

Extreme case setup Time 

overhead 

c2b 62.15 ms 62.24 ms 64.03 ms 62.80 ms –

b2c 5.83 ms 5.73 ms 6.16 ms 5.91 ms –

c2c 67.98 ms 67.97 ms 70.19 ms 68.71 ms –

Transmission time c2c 70.86 ms 70.77 ms 72.27 ms 71.3 ms –

Throughput c2b 13.93 cp/s 13.85 cp/s 13.85 cp/s 13.87 cp/s 41.63 cp/s 

b2c 15.50 cp/s 15.46 cp/s 15.48 cp/s 15.48 cp/s 46.44 cp/s 

c2c 29.43 cp/s 29.31 cp/s 29.33 cp/s 29.36 cp/s 88.07 cp/s 

Fig. 6. Performance analysis results. 
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ylinders in the nursing home. Therefore, a service capable of pre- 

icting a worsening and informing the medical personnel could 

elp to shorten these delays, favoring more timely treatments. 

Machine learning (ML) / Deep Learning (DP) and CEP-based 

olutions are typically employed as alternative approaches to the 

nalysis of data streams in IoT applications. Nonetheless, a few in- 

egrated solutions have been proposed to enable predictive ana- 

ytics in CEP systems (e.g., see Akbar et al., 2017 ). Following the 

ame idea, we believe our CEP system could benefit from ML/DP 

ervices able to predict the occurrence of complex events. How- 

ver, the integration is far from being straightforward, as several 

hallenging issues should be addressed, which we briefly discuss 

n what follows. Although some prediction algorithms have already 

een proposed for the same purpose (e.g., see Akbar et al., 2017 ), 

 thorough analysis and experimental evaluation are required to 

valuate their applicability in our scenario, identifying the best al- 

orithms to employ. Even hypothesizing the availability of an ML 

lgorithm that fits our scenario, one should also consider further 

ssues, namely: i) how ML/DP modules could be interfaced with 

he existing system, and ii) once predictions are derived, how they 

an be used, exploiting the native framework’s communication and 

ccess control features. The former issue requires defining an effi- 

ient data analysis pipeline for MQTT messages to support real- 

ime analytics. A promising approach to be considered for possible 

doption in our framework requires bridging MQTT environments 

o Kafka 14 ecosystems (e.g., see Hugo et al., 2020; Štufi. and Ba ̌cl ́c.,

022 ). Data streams can then be analyzed by exploiting the Kafka 

tream API ( Seymour, 2021 ) and third-party libraries for ML / DP, 

uch as, for instance, Tensor Flow. 15 . This technology has been al- 
14 https://kafka.apache.org Shapira et al. (2021) . s

16 
eady used in several use cases. For instance, Audi uses it in the 

ack-end of a connected vehicle infrastructure to perform real-time 

raffic recommendations and prediction maintenance. 16 

As far as prediction usage is concerned, sinks could be neces- 

ary to collect predicted events, which could then be converted 

nto MQTT messages and issued to authorized subjects. An ap- 

roach similar to the one we adopt for the actions referred to by 

mergency evolutions (see Section 7.3 ) could be used for this pur- 

ose. More precisely, a new type of action can be defined and ex- 

cuted during the whole permanence into an emergency scenario 

tage, which converts predicted events into MQTT messages and 

elivers them to the rightful subjects. 

Concurrency control and scalability Although our experiments 

ave shown reasonably good results in both the considered setups, 

he observed growth of the transmission time in the extreme case 

etups could suggest the need for techniques to make the approach 

fficient even in very large-scale scenarios. 

A possible reason for the observed behavior is the centralized 

pproach that handles the evolution of emergency scenarios, which 

as been designed to be executed on a single CEP Interface. 

A key role is played in our system by the handlers update- 

otifier and no-change-notifier , which are responsible for manag- 

ng the evolution of an emergency scenario es . In our prototype, a 

nique component carries out both handlers. This component im- 

lements a single-threaded event loop model, employing a pool 

f internal threads for the interaction with an instance of Redis, 

hich keeps track of metadata related to emergencies and access 
15 https://www.tensorflow.org . 
16 https://www.confluent.io/kafka- summit- london18/keynote-fast-cars-in-a- 

treaming- world- reimagining- transportation- at- audi . 

https://kafka.apache.org
https://www.tensorflow.org
https://www.confluent.io/kafka-summit-london18/keynote-fast-cars-in-a-streaming-world-reimagining-transportation-at-audi
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ontrol. The incoming complex events generated by the CEP en- 

ine are added to an event queue. These events can either refer 

o a complex event type referred to by the evolutions of es , or a

pecial one, hereafter denoted with no-cet , which denotes that the 

EP engine does not detect any compatible event. 

For any event ce that is picked up from this queue, if ce ’s type is

o-cet , it cannot trigger the evolution of es . Therefore, ce ’s analysis

s immediately terminated. Otherwise, a dedicated thread from the 

ool is selected, which selects the current stage of the emergency 

cenario from the Redis keyspace, and checks if ce causes the evo- 

ution of es . In such a case, this thread updates the scenario’s cur- 

ent stage in the Redis keyspace. Our prototype has been designed 

n such a way that, at most, one internal thread is active at a time

nd can update the current stage of es . The events are analyzed 

n the same order the CEP engine has generated them, and thus, 

s evolves following their chronological detection order. Therefore, 

t has the benefit of avoiding possible conflicts which could arise 

ith distributed implementations; however, as mentioned before, 

he presence of a single CEP Interface could be a system bottleneck 

or large-scale scenarios. Different solutions could be employed to 

ddress this issue. A straightforward one could require substituting 

he centralized CEP Interface with multiple instances of this com- 

onent, each devoted to interacting with a different enforcement 

onitor. This change would allow splitting the emergency manage- 

ent workload into multiple parallel ones, requiring the manage- 

ent of concurrent updates to the scenario’s current stage in the 

edis keyspace. Despite conflicts can be avoided by specifying read 

nd write accesses to the Redis keyspace within transactions, 17 the 

pdating order cannot be guaranteed to comply with the event de- 

ection order. Although this problem could be addressed by config- 

ring the system so that each emergency scenario is entirely han- 

led by only one CEP interface, this strategy is unsuited for appli- 

ations characterized by a single emergency scenario of big size. 

A totally different solution to the issues mentioned above could 

e an approach allowing the integrated management of event de- 

ection and emergency evolution by a unique data management 

ystem. Recent data stream processing systems (DSPS), such as 

pache Flink, 18 allow sharing state information among events. A 

ew state-of-the-art systems (e.g., Botan et al., 2012; Wang et al., 

011; Zhang et al., 2020 ), allow supporting concurrent state access 

uring stream processing with transactional semantics. The access 

o application states by multiple executors is achieved using state 

ransactions, 19 whose execution is scheduled in such a way to re- 

pect the chronological order of their trigger events. It is expected 

hat our framework could benefit from integrating a similar sys- 

em. Indeed, in such a case, our CEP Interface could be relieved 

rom the necessity to handle emergencies’ evolutions, as this task 

ould be in charge of the adopted DSPS. However, several issues 

hould be addressed before this integration could be possible. 

The first issue is related to modeling aspects. We believe emer- 

ency evolutions can be implemented as state transactions execut- 

ng concurrent accesses to the current stage of an emergency sce- 

ario, which, along with all other emergency management meta- 

ata, represents a shared state. We also think the events that 

rigger these state transactions cannot refer to the same complex 

vent type as those that trigger the implemented evolutions. In- 

eed, in our application scenario, a transaction implementing an 

volution ev could only be executed if ev refers to the current stage 

f the emergency scenario within its source component ev.src . This 

dditional precondition is not caught by the events of type ev.cet , 
17 Redis employs an optimistic concurrency control, where the check-and-set 

echanism is used to control transaction executions. 
18 Apache Flink, https://flink.apache.org/ . 
19 A state transaction is a set of state accesses triggered by the processing of one 

nput event at one operator ( Zhang et al., 2020 ). 

B

d

t

Y

c

17 
s in our framework complex event types do not specify the emer- 

ency situations where related events can occur, and thus, event 

ccurrence does not depend on the scenario’s current stage. As a 

onsequence, it is necessary to determine if a new class of event 

ypes is required to trigger transactions’ execution. 

Another issue is related to the management of actions possi- 

ly specified by the evolutions. Based on the previous reasoning, 

volutions could be implemented as state transactions. Therefore, 

ow actions can be executed when transactions are scheduled for 

xecution should be defined. 

Finally, a further significant issue is how policy retrieval can be 

chieved. To select the access control policies applicable to access 

equests, the enforcement monitor has to be aware of the current 

tage of the emergency scenarios where requesting subjects are 

nvolved. In the current prototype, based on the fact that emer- 

ency metadata and access control policies are both managed by 

he same instance of Redis, we have used a Redis transaction to 

chieve this selection. This transaction retrieves the current stage 

f the emergency scenarios where the subject is involved and de- 

ives the applicable policies for the resulting selection. A similar 

pproach could also be used if a stateful DSPS which employs con- 

urrent state access was employed. However, to define how this 

election can be achieved, one should first evaluate if emergency 

nd access control metadata can both be represented as states or 

ow Redis could be jointly used with the DSPS for this selection. 

Our early analysis has revealed that the DSPS presented in 

hang et al. (2020) , denoted TStorm, distinguishes from the other 

roposals for efficient state transaction scheduling and processing 

echanisms designed to exploit parallelism opportunities offered 

y multi-core architectures. Therefore, assuming that previously 

entioned issues could be addressed, the integration of TStorm 

ithin our system could magnify scalability and efficiency bene- 

ts. 

. Related work 

The great majority of approaches to handle access control dur- 

ng emergencies employ the break the glass (BtG) paradigm, ac- 

ording to which, during an emergency, a user requests and gains 

ccess to resources that in normal situations would not be permit- 

ed. 

A seminal work by Brucker and Petritsch (2009) proposed an 

pproach to integrate BtG policies into access control models. The 

roposed mechanism relies on emergency levels, namely BtG poli- 

ies that extend the privileges granted by regular policies, allow- 

ng fine-grained control over protected resources. Enabling policies 

re employed to allow subjects to activate BtG policy at run-time. 

n case of break the glass requests during an emergency, the ac- 

ess decision is derived from the applicable active BtG policies. 

he same authors in Brucker et al. (2010) investigated the inte- 

ration of BtG mechanisms with Attribute-based Encryption (ABE), 

hich is a technique that uses public-key cryptography to en- 

orce fine-grained access control based on user attributes. The ap- 

roach proposed in Brucker et al. (2010) is based on a hierarchy 

f emergency attributes employed to encrypt and decrypt data re- 

ources. Emergency attributes denote emergency severity levels ac- 

ivated/inactivated by a central authority and are used to encode 

tG policies. A BtG access is only possible when the emergency 

ttribute required for decryption is active and the same attribute 

as active at encryption time. 

The approaches by Brucker and Petritsch (2009) ; 

rucker et al. (2010) and Rajput et al. (2021) have not been 

esigned for IoT applications, which in contrast have been 

argeted by several more recent proposals. For instance, 

ang et al. (2018) propose a password-based break-glass access 

ontrol mechanism for IoT ecosystems. In Yang et al. (2019) the 

https://flink.apache.org/
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ame approach has been used to protect the access to patients’ 

edical files in a cloud-enabled IoT healthcare ecosystem. 

Aski et al. (2021) proposed an access control mechanism based 

n BtG and ABE to regulate the access to healthcare data within a 

loud-enabled IoT medical ecosystem during emergency situations. 

he proposed approach employs pre-shared passwords to extract 

tG keys, however, implementation details of the proposed model 

re not discussed. 

de Oliveira et al. (2020) proposed a cloud-enabled framework 

here a BtG mechanism is used to grant medical personnel access 

o encrypted medical data managed by a cloud-based application 

uring emergency situations. 

Belguith et al. (2018) , proposed a BtG access control approach 

hat leverages on: i) Shamir’s secret sharing scheme, to derive se- 

ret shares from a secret access key, ii) ABE, used to encrypt the 

ecret shares, and iii) QR encoding of the encrypted shares. In or- 

er to execute a BtG access users have to scan QR codes and re-

over individual keys with their attributes. 

Van Bael et al. (2020) proposed a context-aware BtG ac- 

ess control framework for IoT environments. A key feature of 

an Bael et al. (2020) is the ability to predict emergencies from 

ontextual information generated by IoT sensors. On the prediction 

f an emergency, users are notified of the predicted situation, and 

ontextually, the related break-glass policies are activated. The sys- 

em then waits for possible break-glass requests. 

Marinovic et al. (2014) , proposed a BtG model that employs a 

ogic programming language to reason about unknown and con- 

icting information in policy decisions, and a policy specification 

anguage that allows security administrators to rule break-glass ac- 

esses. 

Several BtG extensions have also been proposed for RBAC (e.g., 

erreira et al., 2009; Maw et al., 2014; Maw et al., 2016; Nazerian 

t al., 2019 ). 

Our approach and BtG based approaches have significant dif- 

erences. In our framework subjects do not need to explicitly ask 

or exceptional access permissions, since they gain access privi- 

eges granted by emergency policies as soon as emergency situ- 

tions are detected, favoring a more efficient control of the pro- 

ected data. In addition, none of the above-mentioned proposals 

ere designed to work with MQTT based IoT ecosystems, and ex- 

ept for Van Bael et al. (2020) , none provide an emergency detec- 

ion mechanism. 

Padmashree et al. (2021) proposed an access control framework 

hat employs Elliptic Curve Cryptography to enforce secure access 

o patient data over Healthcare IoT in both normal and emergency 

ituations. The main contribution of Padmashree et al. (2021) is 

 lightweight cryptographic enforcement mechanism that can be 

sed during emergencies. However, no support for emergency de- 

ection is provided, nor for the specification and management of 

mergency evolutions. 

We are only aware of a few more approaches to emergency de- 

ection and data sharing regulation in emergency situations (i.e., 

arminati et al., 2013; Dallel et al., 2021; Kabbani et al., 2014 ). 

ore precisely, Kabbani et al. (2014) proposed an approach to en- 

orce ABAC policies in ordinary and emergency situations. Like our 

odel, ordinary and emergency situations are detected by employ- 

ng a CEP-based approach. However, different from our work, no 

ystematic approach to gathering events from event sources and 

inding events to ordinary and emergency situations are discussed, 

nd no performance evaluation is proposed. 

Carminati et al. (2013) proposed a framework to en- 

orce controlled information sharing under emergency situa- 

ions, which employs a CEP system for emergency detection. 

n Carminati et al. (2013) , emergency policies regulate the gen- 

ration of temporary access control policies that override ordi- 

ary privileges in emergency situations. Once an emergency is de- 
18
ected, the applicable temporary access control policies are gen- 

rated, stored in local repositories, and kept active until either 

nother emergency is detected or the current emergency is over. 

n contrast, our approach does not require generating and man- 

ging temporary policies. Once an emergency situation is de- 

ected, the applicable emergency policies are selected to grant 

o the involved subjects the exceptional privileges permitted in 

he considered situation. In addition, different from our work, in 

arminati et al. (2013) no management support is given to the pos- 

ible development of an emergency situation into an articulated 

mergency scenario. 

Lastly, Dallel et al. (2021) proposed an XACML-based access 

ontrol framework to manage emergencies within IoT smart build- 

ngs. In Dallel et al. (2021) , a smart building includes several types 

f emergency detection sensors (e.g., smoke detectors) which em- 

loy an MQTT-based communication interface. A key feature of 

allel et al. (2021) is an emergency communication center (ECC), 

hich alerts rescue agencies (e.g., the fire department) of the 

mergency notifications issued by the above-mentioned sensors. In 

ddition, to favor a prompt intervention, the ECC delegates rescue 

eams access to relevant data such as damaged areas, safe exits, 

nd evacuees’ locations. Data sharing is controlled by delegation 

olicies, embedded in capabilities tokens, and enforced by an ad- 

oc designed module denoted delegation decision point. Despite 

oth our framework and Dallel et al. (2021) target MQTT-based IoT 

cosystems, these works have significant differences. In particular, 

n Dallel et al. (2021) , no support is given for the modeling and

anagement of emergency evolutions. In addition, it is not clear 

ow ordinary access control is restored once an emergency is over. 

0. Conclusions 

In this paper, we have proposed an access control system to 

nforce controlled data sharing within MQTT-based IoT ecosystems 

uring emergency and ordinary situations. The system analyzes the 

QTT messages exchanged in a monitored ecosystem leveraging 

n Complex Event Processing for emergency detection. Emergency 

nd ordinary ABAC policies are employed to regulate data sharing 

n emergency and ordinary situations respectively. 

We have assessed the feasibility of the proposed approach with 

 case study related to a healthcare application that monitors nurs- 

ng home patients during the COVID-19 pandemic. Early exper- 

mental performance evaluations show promising results and a 

uite acceptable policy enforcement overhead. We plan to enhance 

his preliminary assessment by testing the approach in further ap- 

lication scenarios. 

In spite of this positive feedback, the experience has also al- 

owed the identification of framework limitations, related to emer- 

ency preparedness, and efficiency when growing the scale of ap- 

lication scenarios. Although we have started reasoning on poten- 

ial addressing strategies (see Section 8.3 ), we plan to further ex- 

lore them in future work. 

Preparedness can be favored by services that predict emergency 

ggravations. Indeed, such a functionality allows the preventive 

lanning of countermeasures and thus shortens the reaction time 

o emergency occurrences. However, the implementation of these 

ervices requires addressing some methodological and technologi- 

al issues that we have discussed in Section 8.3 . 

On the other hand, different approaches could favor a higher 

ramework efficiency in large-scale scenarios. In particular, we have 

onsidered the use of multiple CEP interfaces, and the possible 

ubstitution of the CEP engine with a DSPS able to support con- 

urrent state accesses. The latter option appears quite promising, 

ven due to systems able to exploit the parallelism opportunities 

ffered by modern multi-core architectures. However, at the same 
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ime, it is constrained by issues related to the modeling and man- 

gement of state transactions (see Section 8.3 ). 

An additional strategy to optimize our framework could be the 

se of multi-query optimization techniques for CEP systems (e.g., 

ee Zhang et al., 2017 ). These approaches aim at reducing redun- 

ant computation among pattern queries that work on the same 

ata streams. We plan to design similar techniques for our frame- 

ork as future work. Lastly, we are also planning to develop a tool 

hat helps security administrators to perform administrative oper- 

tions related to ordinary and emergency situations, and a moni- 

oring tool to evaluate the effects of the specified policies. 
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ppendix A. Correctness 

In this appendix, we discuss the key properties of the proposed 

ramework, which are instrumental in correctly (i) managing the 

volution of emergency scenarios and (ii) selecting emergency and 

rdinary policies applicable to an access request. The correctness of 

olicy enforcement leverages on these properties, which represent 

he core contribution of the current paper. In contrast, we do not 

over here the correctness of the enforcement mechanism, since 

hese proofs would be heavily based on the message-altering ap- 

roach presented in Colombo and Ferrari (2018) , which here has 

nly been used as a black-box external service. 

In summary, the properties we cover in this section are the fol- 

owing: 

1. the enforcement monitor intercepts any MQTT control packet 

exchanged in the monitored environment, and forwards any in- 

tercepted client’s publishing request to the CEP interface; 

2. any primitive event notification generated by the CEP interface 

on receipt of an intercepted publishing request refers to a com- 

plex event type that is bound to that packet; 

3. any specified complex event type is referred to by at least one 

primitive event of the generated set; 

4. the CEP engine detects any complex event of the specified types 

which occurs in the monitored environment, notifying it to the 

CEP interface; 
19 
5. the CEP engine correctly updates the current stage of the emer- 

gency scenarios based on the complex events notified by the 

CEP engine; 

6. the enforcement monitor correctly selects the policies applica- 

ble to an access request issued by a subject based on the cur- 

rent stage of the emergency scenarios where that subject is in- 

volved. 

Let us consider an application scenario where it is required to 

egulate data sharing in an MQTT environment tenv , in the pres- 

nce of an emergency scenario Es that involves a set S of subjects. 

et Ps be the set of ordinary and emergency policies specified for 

s, and let PET and CET be the set of primitive and complex event 

ypes specified for the considered scenario. 

Let C be the set of MQTT clients of tenv , let b be the message

roker of tenv , and let us assume a framework deployment that 

ncludes an enforcement monitor m , a NoSQL datastore that keeps 

rack of metadata related to emergency management and access 

ontrol, and a CEP interface which manages the evolution of Es re- 

ying on the detection abilities of a CEP engine. 

We assume that all clients of tenv are configured to connect 

ith m rather than directly with b. 

tatement 1 (System interface) . Any control packet issued by an 

QTT client c i or the MQTT broker b of tenv is intercepted by m. 

Discussion. Based on the above-mentioned assumptions, any 

lient c i is configured to connect with m rather than directly with 

, and m to connect with b on behalf of c i . Since control pack-

ts can only be delivered through the established connections, all 

ackets issued by c i , or b, are intercepted by m. 

To reason on the behavior of the adopted CEP system, we rely 

n some obvious assumptions: i) all primitive event notifications 

bserved by the CEP engine are generated by the CEP interface, ii) 

he CEP engine observes all primitive event notifications generated 

y the CEP interface, and iii) all complex event notifications gener- 

ted by the CEP engine are received by the CEP interface. 

Let cp PB be a client publishing a request intercepted by m and 

otified to the CEP interface within a packet cp PB 
∗ along with the 

ubject, object, and environment attributes associated with the re- 

ated access request context. Let us denote with PEN t the set of 

rimitive event notifications generated by the CEP interface on re- 

eipt of cp PB 
∗ at time t. In addition, let isBound(et,p) be a boolean 

unction that receives as input a primitive event type et and a pub- 

ishing request p and evaluates true iff p is bound to et , namely if 

he binding criteria referred to by et are satisfied for p . 

tatement 2 (Compliancy of primitive event generation) . For any 

rimitive event notification pen ∈ PEN t , cp PB is bound to the prim- 

tive event type pet ∈ PET referred to as type of pen. 

Discussion. As discussed in Section 7.1 , the control task that is 

nstantiated by the CEP interface on receipt of cp PB 
∗ at time t iter- 

tes over the set of primitive event types PET to select those usable 

or primitive event generation. A primitive event type pt of PET is 

elected iff isBound (pt, cp PB ) returns true. Any selected primitive 

vent type pt is then employed to derive a primitive event notifi- 

ation pe which refers to pt as type. The union of the generated 

otifications composes PEN t . Therefore, since pen ∈ PEN t , and PEN t 

as been derived from cp PB , then pen has been generated starting 

rom a complex event type pet that is bound to cp PB , which is also

eferred to as the type of pen . 

tatement 3 (Completeness of primitive event generation) . For any 

rimitive event type pet ∈ PET such that cp PB is bound to pet, 

here exists a primitive event notification pen ∈ PEN t , which refers 

o pet as type. 
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Discussion. By construction, the control task instantiated by the 

EP interface on receipt of cp PB 
∗ generates a primitive event no- 

ification pen for any primitive event type pet of PET such that 

sBound(pet, cp PB ) is true, which specifies pet as type. As a con- 

equence, there cannot exist a primitive event type pet’ ∈ PET such 

hat isBound(pet’, cp PB ) = true, which is not referred to as type by a

rimitive event notification pen ∈ PEN t . 

tatement 4 (Correctness of complex event generation) . Any com- 

lex event of type cet ∈ CET which occurs in the monitored en- 

ironment tenv is detected by the CEP engine and notified to the 

EP interface. 

Discussion. Correctness of complex event generation entirely 

ely on the detection abilities of the CEP engine, and we assume 

he CEP engine’s ability to correctly catch events of any specified 

omplex event type cet ∈ CET, notifying all detected events to the 

EP interface. 

Let us now focus on the ability to correctly manage the evolu- 

ion of emergency scenarios. At Es specification time, the CEP inter- 

ace instantiates the event handlers update-notifier and nochange- 

otifier , which subscribe to the notification of events generated by 

he CEP engine and manage the evolution of the emergency sce- 

ario (see Section 7.2 ). In particular, update-notifier is notified of 

he detection of any complex event ce that refers as type the same 

omplex event type referred to by at least one evolution of the Es’ 

mergency development plan. 

Let Edp be the emergency development plan of Es, and let Ev be 

he set of emergency evolutions referred to by Edp (see Section 5 ). 

Let us denote with ems the current stage of Es, and let v be the

ast value to which ems has been set at time t , where t refers to

he time annotation of the complex event type that has caused the 

pdate. Let CE t 
v be the set of complex events notified by the CEP 

ngine to update-notifier since the last update of ems to v at time 

 . A strict total order is defined on CE t 
v , based on the time anno-

ation referred to by the collected events, and thus, complex event 

otifications are processed in the same order as they have been 

enerated by the CEP engine. In addition, let us refer to the time 

nnotation and type associated with a complex event notification 

e ∈ CE t 
v with notation ce.ts and ce.type, respectively. 

To reason about the possible evolution of the current stage of 

s, let us refer to any evolution ev in Ev which refers to v within

omponent src as evolution based on v , and let us denote with trig- 

er of v evolution any event ce ∈ CE t 
v such that there exists an

volution ev based on v which refers to ce.type as complex event 

ype (i.e., ce.type = ev.cet). 

tatement 5 (Correctness of emergency scenario evolution) . On re- 

eipt of an event event ce that is a trigger of v evolution, the value

eferred to by ems is updated from v to v’ iff ∃ ev ∈ Ev that is an

volution based on v, such that ev.trg = v’ ∧ ev.cet = ce.type ∧ � ∃ ce’

 CE t 
v that is a trigger of v evolution, such that t < ce’.ts < ce.ts. 

Discussion. By construction, update-notifier is the only process 

hat can update ems. In addition, by construction, on receipt of 

e, update-notifier looks for an evolution ev based on v in Ev 

hich refers to ce.type as complex event type. Based on the well- 

ormedness rules of emergency development plans (see Section 5 ), 

ny pair of evolutions that refer to the same value within com- 

onent src, have to specify events of different types within com- 

onent cet. As a consequence, if such an evolution ev based on v 

xists, it is unique within Ev, and thus, denoting the value of ev.trg 

ith v’, update-notifier updates the current stage of Es setting ems 

o v’. 

Let us now suppose by absurd that although ce has caused the 

pdate of ems from v to v’, there exists an event ce’ ∈ CE t 
v , such

hat t < ce’.ts < ce.ts, which is a trigger of v evolution. update-notifier
20 
as been defined in such a way to receive and process complex 

vent notifications based on time annotation in ascending order, 

hus, ce’ is handled before ce. Since ce’ is a trigger of v evolution, 

here exists an evolution ev’ based on v which specifies ce’.type 

s complex event type. Let us now denote with v ∗ the value re- 

erred to by ev’.trg, and with t ∗ the value of ce’.ts. On receipt of 

e’, update-notifier updates ems to v ∗. By assumption ce, which is 

rocessed after ce’, causes the update of ems from v to v’. There- 

ore, at the processing time of ce, ems would refer to a value v ∗

otentially different from v, and, as a consequence, ce could not be 

 trigger of v evolution, contradicting our initial statement. 

Let us now consider how emergency and ordinary policies to 

e applied to subjects’ access requests are determined. Let us start 

ith some preliminary definitions. We say that a an emergency 

cenario Es involves a subject s iff s’ attributes satisfy the subject 

lter expression sf of Es. Similarly, an emergency situation v of Es 

nvolves a subject s iff Es involves s Es, and Es refers to v as its

urrent stage. In addition, s is said to be in an ordinary situation 

ff all emergency scenarios where s is involved are inactive (i.e., 

hey refer to ⊥ as their current stage), or s is not involved in any 

cenario. 

Let us now focus on policy applicability. Let ar be an access re- 

uest issued by a subject s, which requires to read /write a mes- 

age on topic t, and let Ps be the set of ordinary and emergency 

olicies defined for the monitored environment tenv. 

Let us first consider emergency policies. Based on 

efinition 6 in Section 5 , an emergency policy ep of Ps is 

aid to be applicable to the access request ar iff: i) ep.s matches 

 attributes, ii) s is involved in an emergency scenario Es which 

s among the emergency scenarios referred to by ep.esf, iii) the 

mergency situation v referred to as current stage of Es (where, v 

 ⊥ ) is among the emergency situations referred to by ep.stf, iv) t

s matched by ep.tf, and v) ep.pr matches the read/write privilege 

equested by ar. 

In contrast, an ordinary policy p of Ps is said to applicable to 

he access request ar issued by s iff: i) s is not involved in any

mergency scenario or all scenarios where s is involved are inac- 

ive, ii) p.s matches s attributes, v) t is matched by p.tf, and v) p.pr

atches the read/write privilege requested by ar. 

tatement 6 (Correctness of policy selection) . Any access request 

r issued by a subject s is regulated by a set of policies APs, where

Ps ⊆ Ps, which is either entirely composed of emergency policies 

r ordinary policies. Any emergency/ordinary policy p in APs is ap- 

licable to ar, and does not exist an emergency/ordinary policy p’ 

f Ps applicable to ar that does not belong to APs. 

Discussion. Correctness of policy selection entirely rely on the 

election abilities of the enforcement monitor. For ordinary poli- 

ies we rely on the mechanism described in Colombo and Fer- 

ari (2018) . Emergency policy selection is achieved by employing 

 similar technique and therefore, in the current paper, its descrip- 

ion has been omitted. 
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